Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpo Structured version   Visualization version   GIF version

Theorem elrnmpo 7261
 Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elrnmpo.1 𝐶 ∈ V
Assertion
Ref Expression
elrnmpo (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem elrnmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 7258 . . 3 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32eleq2i 2903 . 2 (𝐷 ∈ ran 𝐹𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶})
4 elrnmpo.1 . . . . . 6 𝐶 ∈ V
5 eleq1 2899 . . . . . 6 (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V))
64, 5mpbiri 261 . . . . 5 (𝐷 = 𝐶𝐷 ∈ V)
76rexlimivw 3268 . . . 4 (∃𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
87rexlimivw 3268 . . 3 (∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
9 eqeq1 2825 . . . 4 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
1092rexbidv 3286 . . 3 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
118, 10elab3 3651 . 2 (𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
123, 11bitri 278 1 (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   = wceq 1538   ∈ wcel 2115  {cab 2799  ∃wrex 3127  Vcvv 3471  ran crn 5529   ∈ cmpo 7132 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pr 5303 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-sn 4541  df-pr 4543  df-op 4547  df-br 5040  df-opab 5102  df-cnv 5536  df-dm 5538  df-rn 5539  df-oprab 7134  df-mpo 7135 This theorem is referenced by:  qexALT  12341  lsmelvalx  18744  efgtlen  18831  frgpnabllem1  18972  fmucndlem  22876  mbfimaopnlem  24238  tglnunirn  26321  tpr2rico  31163  mbfmco2  31531  br2base  31535  dya2icobrsiga  31542  dya2iocnrect  31547  dya2iocucvr  31550  sxbrsigalem2  31552  cntotbnd  35116  eldiophb  39505  elicores  41989  volicorescl  43011
 Copyright terms: Public domain W3C validator