Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmpo | Structured version Visualization version GIF version |
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
elrnmpo.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
elrnmpo | ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | rnmpo 7469 | . . 3 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
3 | 2 | eleq2i 2828 | . 2 ⊢ (𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶}) |
4 | elrnmpo.1 | . . . . . 6 ⊢ 𝐶 ∈ V | |
5 | eleq1 2824 | . . . . . 6 ⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) | |
6 | 4, 5 | mpbiri 257 | . . . . 5 ⊢ (𝐷 = 𝐶 → 𝐷 ∈ V) |
7 | 6 | rexlimivw 3144 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
8 | 7 | rexlimivw 3144 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
9 | eqeq1 2740 | . . . 4 ⊢ (𝑧 = 𝐷 → (𝑧 = 𝐶 ↔ 𝐷 = 𝐶)) | |
10 | 9 | 2rexbidv 3209 | . . 3 ⊢ (𝑧 = 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) |
11 | 8, 10 | elab3 3627 | . 2 ⊢ (𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
12 | 3, 11 | bitri 274 | 1 ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2713 ∃wrex 3070 Vcvv 3441 ran crn 5621 ∈ cmpo 7339 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 df-dm 5630 df-rn 5631 df-oprab 7341 df-mpo 7342 |
This theorem is referenced by: qexALT 12805 lsmelvalx 19341 efgtlen 19427 frgpnabllem1 19569 fmucndlem 23549 mbfimaopnlem 24925 tglnunirn 27198 tpr2rico 32160 mbfmco2 32532 br2base 32536 dya2icobrsiga 32543 dya2iocnrect 32548 dya2iocucvr 32551 sxbrsigalem2 32553 cntotbnd 36059 eldiophb 40841 elicores 43407 volicorescl 44428 |
Copyright terms: Public domain | W3C validator |