MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpo Structured version   Visualization version   GIF version

Theorem elrnmpo 7485
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elrnmpo.1 𝐶 ∈ V
Assertion
Ref Expression
elrnmpo (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem elrnmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 7482 . . 3 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32eleq2i 2820 . 2 (𝐷 ∈ ran 𝐹𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶})
4 elrnmpo.1 . . . . . 6 𝐶 ∈ V
5 eleq1 2816 . . . . . 6 (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V))
64, 5mpbiri 258 . . . . 5 (𝐷 = 𝐶𝐷 ∈ V)
76rexlimivw 3126 . . . 4 (∃𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
87rexlimivw 3126 . . 3 (∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
9 eqeq1 2733 . . . 4 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
1092rexbidv 3194 . . 3 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
118, 10elab3 3642 . 2 (𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
123, 11bitri 275 1 (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3436  ran crn 5620  cmpo 7351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-cnv 5627  df-dm 5629  df-rn 5630  df-oprab 7353  df-mpo 7354
This theorem is referenced by:  qexALT  12865  lsmelvalx  19519  efgtlen  19605  frgpnabllem1  19752  fmucndlem  24176  mbfimaopnlem  25554  tglnunirn  28493  tpr2rico  33879  mbfmco2  34233  br2base  34237  dya2icobrsiga  34244  dya2iocnrect  34249  dya2iocucvr  34252  sxbrsigalem2  34254  cntotbnd  37780  eldiophb  42734  elicores  45518  volicorescl  46538
  Copyright terms: Public domain W3C validator