| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpo | Structured version Visualization version GIF version | ||
| Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| elrnmpo.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpo | ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | rnmpo 7522 | . . 3 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶}) |
| 4 | elrnmpo.1 | . . . . . 6 ⊢ 𝐶 ∈ V | |
| 5 | eleq1 2816 | . . . . . 6 ⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ (𝐷 = 𝐶 → 𝐷 ∈ V) |
| 7 | 6 | rexlimivw 3130 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
| 8 | 7 | rexlimivw 3130 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
| 9 | eqeq1 2733 | . . . 4 ⊢ (𝑧 = 𝐷 → (𝑧 = 𝐶 ↔ 𝐷 = 𝐶)) | |
| 10 | 9 | 2rexbidv 3202 | . . 3 ⊢ (𝑧 = 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) |
| 11 | 8, 10 | elab3 3653 | . 2 ⊢ (𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| 12 | 3, 11 | bitri 275 | 1 ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3447 ran crn 5639 ∈ cmpo 7389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-dm 5648 df-rn 5649 df-oprab 7391 df-mpo 7392 |
| This theorem is referenced by: qexALT 12923 lsmelvalx 19570 efgtlen 19656 frgpnabllem1 19803 fmucndlem 24178 mbfimaopnlem 25556 tglnunirn 28475 tpr2rico 33902 mbfmco2 34256 br2base 34260 dya2icobrsiga 34267 dya2iocnrect 34272 dya2iocucvr 34275 sxbrsigalem2 34277 cntotbnd 37790 eldiophb 42745 elicores 45531 volicorescl 46551 |
| Copyright terms: Public domain | W3C validator |