| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpo | Structured version Visualization version GIF version | ||
| Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| rngop.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| elrnmpo.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| elrnmpo | ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | 1 | rnmpo 7482 | . . 3 ⊢ ran 𝐹 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} |
| 3 | 2 | eleq2i 2820 | . 2 ⊢ (𝐷 ∈ ran 𝐹 ↔ 𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶}) |
| 4 | elrnmpo.1 | . . . . . 6 ⊢ 𝐶 ∈ V | |
| 5 | eleq1 2816 | . . . . . 6 ⊢ (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V)) | |
| 6 | 4, 5 | mpbiri 258 | . . . . 5 ⊢ (𝐷 = 𝐶 → 𝐷 ∈ V) |
| 7 | 6 | rexlimivw 3126 | . . . 4 ⊢ (∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
| 8 | 7 | rexlimivw 3126 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶 → 𝐷 ∈ V) |
| 9 | eqeq1 2733 | . . . 4 ⊢ (𝑧 = 𝐷 → (𝑧 = 𝐶 ↔ 𝐷 = 𝐶)) | |
| 10 | 9 | 2rexbidv 3194 | . . 3 ⊢ (𝑧 = 𝐷 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶)) |
| 11 | 8, 10 | elab3 3642 | . 2 ⊢ (𝐷 ∈ {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| 12 | 3, 11 | bitri 275 | 1 ⊢ (𝐷 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝐷 = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 Vcvv 3436 ran crn 5620 ∈ cmpo 7351 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 df-oprab 7353 df-mpo 7354 |
| This theorem is referenced by: qexALT 12865 lsmelvalx 19519 efgtlen 19605 frgpnabllem1 19752 fmucndlem 24176 mbfimaopnlem 25554 tglnunirn 28493 tpr2rico 33879 mbfmco2 34233 br2base 34237 dya2icobrsiga 34244 dya2iocnrect 34249 dya2iocucvr 34252 sxbrsigalem2 34254 cntotbnd 37780 eldiophb 42734 elicores 45518 volicorescl 46538 |
| Copyright terms: Public domain | W3C validator |