MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpo Structured version   Visualization version   GIF version

Theorem elrnmpo 7482
Description: Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
rngop.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
elrnmpo.1 𝐶 ∈ V
Assertion
Ref Expression
elrnmpo (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐷
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem elrnmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21rnmpo 7479 . . 3 ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
32eleq2i 2823 . 2 (𝐷 ∈ ran 𝐹𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶})
4 elrnmpo.1 . . . . . 6 𝐶 ∈ V
5 eleq1 2819 . . . . . 6 (𝐷 = 𝐶 → (𝐷 ∈ V ↔ 𝐶 ∈ V))
64, 5mpbiri 258 . . . . 5 (𝐷 = 𝐶𝐷 ∈ V)
76rexlimivw 3129 . . . 4 (∃𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
87rexlimivw 3129 . . 3 (∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶𝐷 ∈ V)
9 eqeq1 2735 . . . 4 (𝑧 = 𝐷 → (𝑧 = 𝐶𝐷 = 𝐶))
1092rexbidv 3197 . . 3 (𝑧 = 𝐷 → (∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
118, 10elab3 3637 . 2 (𝐷 ∈ {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶} ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
123, 11bitri 275 1 (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wcel 2111  {cab 2709  wrex 3056  Vcvv 3436  ran crn 5615  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-dm 5624  df-rn 5625  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  qexALT  12862  lsmelvalx  19552  efgtlen  19638  frgpnabllem1  19785  fmucndlem  24205  mbfimaopnlem  25583  tglnunirn  28526  tpr2rico  33925  mbfmco2  34278  br2base  34282  dya2icobrsiga  34289  dya2iocnrect  34294  dya2iocucvr  34297  sxbrsigalem2  34299  cntotbnd  37846  eldiophb  42860  elicores  45643  volicorescl  46661
  Copyright terms: Public domain W3C validator