Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrnmapom Structured version   Visualization version   GIF version

Theorem satfrnmapom 33232
Description: The range of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is a subset of the power set of all mappings from the natural numbers into the model 𝑀. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfrnmapom ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω))

Proof of Theorem satfrnmapom
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6756 . . . . . . . . 9 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21rneqd 5836 . . . . . . . 8 (𝑎 = ∅ → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘∅))
32eleq2d 2824 . . . . . . 7 (𝑎 = ∅ → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅)))
43imbi1d 341 . . . . . 6 (𝑎 = ∅ → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω))))
54imbi2d 340 . . . . 5 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
6 fveq2 6756 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
76rneqd 5836 . . . . . . . 8 (𝑎 = 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑏))
87eleq2d 2824 . . . . . . 7 (𝑎 = 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏)))
98imbi1d 341 . . . . . 6 (𝑎 = 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
109imbi2d 340 . . . . 5 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
11 fveq2 6756 . . . . . . . . 9 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
1211rneqd 5836 . . . . . . . 8 (𝑎 = suc 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘suc 𝑏))
1312eleq2d 2824 . . . . . . 7 (𝑎 = suc 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏)))
1413imbi1d 341 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
1514imbi2d 340 . . . . 5 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
16 fveq2 6756 . . . . . . . . 9 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1716rneqd 5836 . . . . . . . 8 (𝑎 = 𝑁 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑁))
1817eleq2d 2824 . . . . . . 7 (𝑎 = 𝑁 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁)))
1918imbi1d 341 . . . . . 6 (𝑎 = 𝑁 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
2019imbi2d 340 . . . . 5 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
21 eqid 2738 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
2221satfv0 33220 . . . . . . . 8 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
2322rneqd 5836 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → ran ((𝑀 Sat 𝐸)‘∅) = ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
2423eleq2d 2824 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) ↔ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
25 rnopab 5852 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} = {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
2625eleq2i 2830 . . . . . . 7 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
27 vex 3426 . . . . . . . . . 10 𝑛 ∈ V
28 eqeq1 2742 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2928anbi2d 628 . . . . . . . . . . . 12 (𝑦 = 𝑛 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
30292rexbidv 3228 . . . . . . . . . . 11 (𝑦 = 𝑛 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
3130exbidv 1925 . . . . . . . . . 10 (𝑦 = 𝑛 → (∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
3227, 31elab 3602 . . . . . . . . 9 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
33 ovex 7288 . . . . . . . . . . . . . . 15 (𝑀m ω) ∈ V
34 ssrab2 4009 . . . . . . . . . . . . . . 15 {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ⊆ (𝑀m ω)
3533, 34elpwi2 5265 . . . . . . . . . . . . . 14 {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ∈ 𝒫 (𝑀m ω)
36 eleq1 2826 . . . . . . . . . . . . . 14 (𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ∈ 𝒫 (𝑀m ω)))
3735, 36mpbiri 257 . . . . . . . . . . . . 13 (𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑛 ∈ 𝒫 (𝑀m ω))
3837adantl 481 . . . . . . . . . . . 12 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
3938a1i 11 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω)))
4039rexlimivv 3220 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
4140exlimiv 1934 . . . . . . . . 9 (∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
4232, 41sylbi 216 . . . . . . . 8 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω))
4342a1i 11 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω)))
4426, 43syl5bi 241 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω)))
4524, 44sylbid 239 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω)))
4621satfvsuc 33223 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
47463expa 1116 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
4847rneqd 5836 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = ran (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
49 rnun 6038 . . . . . . . . . . . . 13 ran (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
5048, 49eqtrdi 2795 . . . . . . . . . . . 12 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
5150eleq2d 2824 . . . . . . . . . . 11 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ 𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
52 elun 4079 . . . . . . . . . . . 12 (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
53 rnopab 5852 . . . . . . . . . . . . . . 15 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
5453eleq2i 2830 . . . . . . . . . . . . . 14 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
55 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5655anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
5756rexbidv 3225 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
58 eqeq1 2742 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
5958anbi2d 628 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6059rexbidv 3225 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6157, 60orbi12d 915 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6261rexbidv 3225 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑛 → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6362exbidv 1925 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6427, 63elab 3602 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6554, 64bitri 274 . . . . . . . . . . . . 13 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6665orbi2i 909 . . . . . . . . . . . 12 ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6752, 66bitri 274 . . . . . . . . . . 11 (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6851, 67bitrdi 286 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
6968expcom 413 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))))
7069adantr 480 . . . . . . . 8 ((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))))
7170imp 406 . . . . . . 7 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
72 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
7372imp 406 . . . . . . . 8 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))
74 difss 4062 . . . . . . . . . . . . . . . . . 18 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ⊆ (𝑀m ω)
7533, 74elpwi2 5265 . . . . . . . . . . . . . . . . 17 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ∈ 𝒫 (𝑀m ω)
76 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ∈ 𝒫 (𝑀m ω)))
7775, 76mpbiri 257 . . . . . . . . . . . . . . . 16 (𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑛 ∈ 𝒫 (𝑀m ω))
7877adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑛 ∈ 𝒫 (𝑀m ω))
7978adantl 481 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑛 ∈ 𝒫 (𝑀m ω))
8079rexlimiva 3209 . . . . . . . . . . . . 13 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑛 ∈ 𝒫 (𝑀m ω))
81 ssrab2 4009 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ⊆ (𝑀m ω)
8233, 81elpwi2 5265 . . . . . . . . . . . . . . . . 17 {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ∈ 𝒫 (𝑀m ω)
83 eleq1 2826 . . . . . . . . . . . . . . . . 17 (𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ∈ 𝒫 (𝑀m ω)))
8482, 83mpbiri 257 . . . . . . . . . . . . . . . 16 (𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} → 𝑛 ∈ 𝒫 (𝑀m ω))
8584adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
8685a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ ω → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω)))
8786rexlimiv 3208 . . . . . . . . . . . . 13 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
8880, 87jaoi 853 . . . . . . . . . . . 12 ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
8988a1i 11 . . . . . . . . . . 11 (𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9089rexlimiv 3208 . . . . . . . . . 10 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
9190exlimiv 1934 . . . . . . . . 9 (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
9291a1i 11 . . . . . . . 8 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9373, 92jaod 855 . . . . . . 7 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9471, 93sylbid 239 . . . . . 6 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9594exp31 419 . . . . 5 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
965, 10, 15, 20, 45, 95finds 7719 . . . 4 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
9796com12 32 . . 3 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
98973impia 1115 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9998ssrdv 3923 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558  cop 4564   class class class wbr 5070  {copab 5132  ran crn 5581  cres 5582  suc csuc 6253  cfv 6418  (class class class)co 7255  ωcom 7687  1st c1st 7802  2nd c2nd 7803  m cmap 8573  𝑔cgoe 33195  𝑔cgna 33196  𝑔cgol 33197   Sat csat 33198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-goel 33202  df-sat 33205
This theorem is referenced by:  satff  33272
  Copyright terms: Public domain W3C validator