| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅)) | 
| 2 | 1 | rneqd 5949 | . . . . . . . 8
⊢ (𝑎 = ∅ → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘∅)) | 
| 3 | 2 | eleq2d 2827 | . . . . . . 7
⊢ (𝑎 = ∅ → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅))) | 
| 4 | 3 | imbi1d 341 | . . . . . 6
⊢ (𝑎 = ∅ → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 5 | 4 | imbi2d 340 | . . . . 5
⊢ (𝑎 = ∅ → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω))) ↔
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))))) | 
| 6 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏)) | 
| 7 | 6 | rneqd 5949 | . . . . . . . 8
⊢ (𝑎 = 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑏)) | 
| 8 | 7 | eleq2d 2827 | . . . . . . 7
⊢ (𝑎 = 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏))) | 
| 9 | 8 | imbi1d 341 | . . . . . 6
⊢ (𝑎 = 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 10 | 9 | imbi2d 340 | . . . . 5
⊢ (𝑎 = 𝑏 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω))) ↔
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))))) | 
| 11 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏)) | 
| 12 | 11 | rneqd 5949 | . . . . . . . 8
⊢ (𝑎 = suc 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘suc 𝑏)) | 
| 13 | 12 | eleq2d 2827 | . . . . . . 7
⊢ (𝑎 = suc 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏))) | 
| 14 | 13 | imbi1d 341 | . . . . . 6
⊢ (𝑎 = suc 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 15 | 14 | imbi2d 340 | . . . . 5
⊢ (𝑎 = suc 𝑏 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω))) ↔
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))))) | 
| 16 |  | fveq2 6906 | . . . . . . . . 9
⊢ (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁)) | 
| 17 | 16 | rneqd 5949 | . . . . . . . 8
⊢ (𝑎 = 𝑁 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑁)) | 
| 18 | 17 | eleq2d 2827 | . . . . . . 7
⊢ (𝑎 = 𝑁 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁))) | 
| 19 | 18 | imbi1d 341 | . . . . . 6
⊢ (𝑎 = 𝑁 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 20 | 19 | imbi2d 340 | . . . . 5
⊢ (𝑎 = 𝑁 → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω))) ↔
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))))) | 
| 21 |  | eqid 2737 | . . . . . . . . 9
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) | 
| 22 | 21 | satfv0 35363 | . . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘∅) = {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})}) | 
| 23 | 22 | rneqd 5949 | . . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ran ((𝑀 Sat 𝐸)‘∅) = ran {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})}) | 
| 24 | 23 | eleq2d 2827 | . . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) ↔ 𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})})) | 
| 25 |  | rnopab 5965 | . . . . . . . 8
⊢ ran
{〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} = {𝑦 ∣ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} | 
| 26 | 25 | eleq2i 2833 | . . . . . . 7
⊢ (𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})}) | 
| 27 |  | vex 3484 | . . . . . . . . . 10
⊢ 𝑛 ∈ V | 
| 28 |  | eqeq1 2741 | . . . . . . . . . . . . 13
⊢ (𝑦 = 𝑛 → (𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ↔ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) | 
| 29 | 28 | anbi2d 630 | . . . . . . . . . . . 12
⊢ (𝑦 = 𝑛 → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) | 
| 30 | 29 | 2rexbidv 3222 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑛 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) | 
| 31 | 30 | exbidv 1921 | . . . . . . . . . 10
⊢ (𝑦 = 𝑛 → (∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) ↔ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}))) | 
| 32 | 27, 31 | elab 3679 | . . . . . . . . 9
⊢ (𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} ↔ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})) | 
| 33 |  | ovex 7464 | . . . . . . . . . . . . . . 15
⊢ (𝑀 ↑m ω)
∈ V | 
| 34 |  | ssrab2 4080 | . . . . . . . . . . . . . . 15
⊢ {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ⊆ (𝑀 ↑m
ω) | 
| 35 | 33, 34 | elpwi2 5335 | . . . . . . . . . . . . . 14
⊢ {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ∈ 𝒫 (𝑀 ↑m
ω) | 
| 36 |  | eleq1 2829 | . . . . . . . . . . . . . 14
⊢ (𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → (𝑛 ∈ 𝒫 (𝑀 ↑m ω) ↔ {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 37 | 35, 36 | mpbiri 258 | . . . . . . . . . . . . 13
⊢ (𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)} → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 38 | 37 | adantl 481 | . . . . . . . . . . . 12
⊢ ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 39 | 38 | a1i 11 | . . . . . . . . . . 11
⊢ ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 40 | 39 | rexlimivv 3201 | . . . . . . . . . 10
⊢
(∃𝑖 ∈
ω ∃𝑗 ∈
ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 41 | 40 | exlimiv 1930 | . . . . . . . . 9
⊢
(∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 42 | 32, 41 | sylbi 217 | . . . . . . . 8
⊢ (𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 43 | 42 | a1i 11 | . . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 44 | 26, 43 | biimtrid 242 | . . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖∈𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀 ↑m ω) ∣ (𝑓‘𝑖)𝐸(𝑓‘𝑗)})} → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 45 | 24, 44 | sylbid 240 | . . . . 5
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 46 | 21 | satfvsuc 35366 | . . . . . . . . . . . . . . 15
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | 
| 47 | 46 | 3expa 1119 | . . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | 
| 48 | 47 | rneqd 5949 | . . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = ran (((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | 
| 49 |  | rnun 6165 | . . . . . . . . . . . . 13
⊢ ran
(((𝑀 Sat 𝐸)‘𝑏) ∪ {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) | 
| 50 | 48, 49 | eqtrdi 2793 | . . . . . . . . . . . 12
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | 
| 51 | 50 | eleq2d 2827 | . . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ 𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}))) | 
| 52 |  | elun 4153 | . . . . . . . . . . . 12
⊢ (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))})) | 
| 53 |  | rnopab 5965 | . . . . . . . . . . . . . . 15
⊢ ran
{〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} = {𝑦 ∣ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} | 
| 54 | 53 | eleq2i 2833 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) | 
| 55 |  | eqeq1 2741 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑛 → (𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) ↔ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) | 
| 56 | 55 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑛 → ((𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))))) | 
| 57 | 56 | rexbidv 3179 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))))) | 
| 58 |  | eqeq1 2741 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ↔ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) | 
| 59 | 58 | anbi2d 630 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = 𝑛 → ((𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) | 
| 60 | 59 | rexbidv 3179 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑛 → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) ↔ ∃𝑖 ∈ ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) | 
| 61 | 57, 60 | orbi12d 919 | . . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑛 → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))) | 
| 62 | 61 | rexbidv 3179 | . . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑛 → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))) | 
| 63 | 62 | exbidv 1921 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑛 → (∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) ↔ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))) | 
| 64 | 27, 63 | elab 3679 | . . . . . . . . . . . . . 14
⊢ (𝑛 ∈ {𝑦 ∣ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ↔ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) | 
| 65 | 54, 64 | bitri 275 | . . . . . . . . . . . . 13
⊢ (𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))} ↔ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) | 
| 66 | 65 | orbi2i 913 | . . . . . . . . . . . 12
⊢ ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))) | 
| 67 | 52, 66 | bitri 275 | . . . . . . . . . . 11
⊢ (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑦 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))) | 
| 68 | 51, 67 | bitrdi 287 | . . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))))) | 
| 69 | 68 | expcom 413 | . . . . . . . . 9
⊢ (𝑏 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))))) | 
| 70 | 69 | adantr 480 | . . . . . . . 8
⊢ ((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) →
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})))))) | 
| 71 | 70 | imp 406 | . . . . . . 7
⊢ (((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))))) | 
| 72 |  | simpr 484 | . . . . . . . . 9
⊢ ((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) →
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 73 | 72 | imp 406 | . . . . . . . 8
⊢ (((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 74 |  | difss 4136 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ↑m ω)
∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) ⊆ (𝑀 ↑m
ω) | 
| 75 | 33, 74 | elpwi2 5335 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ↑m ω)
∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) ∈ 𝒫 (𝑀 ↑m
ω) | 
| 76 |  | eleq1 2829 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) → (𝑛 ∈ 𝒫 (𝑀 ↑m ω) ↔ ((𝑀 ↑m ω)
∖ ((2nd ‘𝑢) ∩ (2nd ‘𝑣))) ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 77 | 75, 76 | mpbiri 258 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 78 | 77 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 79 | 78 | adantl 481 | . . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏) ∧ (𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣))))) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 80 | 79 | rexlimiva 3147 | . . . . . . . . . . . . 13
⊢
(∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 81 |  | ssrab2 4080 | . . . . . . . . . . . . . . . . . 18
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ⊆ (𝑀 ↑m
ω) | 
| 82 | 33, 81 | elpwi2 5335 | . . . . . . . . . . . . . . . . 17
⊢ {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ 𝒫 (𝑀 ↑m
ω) | 
| 83 |  | eleq1 2829 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} → (𝑛 ∈ 𝒫 (𝑀 ↑m ω) ↔ {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 84 | 82, 83 | mpbiri 258 | . . . . . . . . . . . . . . . 16
⊢ (𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)} → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 85 | 84 | adantl 481 | . . . . . . . . . . . . . . 15
⊢ ((𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 86 | 85 | a1i 11 | . . . . . . . . . . . . . 14
⊢ (𝑖 ∈ ω → ((𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 87 | 86 | rexlimiv 3148 | . . . . . . . . . . . . 13
⊢
(∃𝑖 ∈
ω (𝑥 =
∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 88 | 80, 87 | jaoi 858 | . . . . . . . . . . . 12
⊢
((∃𝑣 ∈
((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 89 | 88 | a1i 11 | . . . . . . . . . . 11
⊢ (𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 90 | 89 | rexlimiv 3148 | . . . . . . . . . 10
⊢
(∃𝑢 ∈
((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 91 | 90 | exlimiv 1930 | . . . . . . . . 9
⊢
(∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)) | 
| 92 | 91 | a1i 11 | . . . . . . . 8
⊢ (((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)})) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 93 | 73, 92 | jaod 860 | . . . . . . 7
⊢ (((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st ‘𝑢)⊼𝑔(1st
‘𝑣)) ∧ 𝑛 = ((𝑀 ↑m ω) ∖
((2nd ‘𝑢)
∩ (2nd ‘𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st ‘𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀 ↑m ω) ∣
∀𝑧 ∈ 𝑀 ({〈𝑖, 𝑧〉} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd ‘𝑢)}))) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 94 | 71, 93 | sylbid 240 | . . . . . 6
⊢ (((𝑏 ∈ ω ∧ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω)))) ∧ (𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 95 | 94 | exp31 419 | . . . . 5
⊢ (𝑏 ∈ ω → (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m ω))) →
((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))))) | 
| 96 | 5, 10, 15, 20, 45, 95 | finds 7918 | . . . 4
⊢ (𝑁 ∈ ω → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 97 | 96 | com12 32 | . . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (𝑁 ∈ ω → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω)))) | 
| 98 | 97 | 3impia 1118 | . 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀 ↑m
ω))) | 
| 99 | 98 | ssrdv 3989 | 1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀 ↑m
ω)) |