Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfrnmapom Structured version   Visualization version   GIF version

Theorem satfrnmapom 35364
Description: The range of the satisfaction predicate as function over wff codes in any model 𝑀 and any binary relation 𝐸 on 𝑀 for a natural number 𝑁 is a subset of the power set of all mappings from the natural numbers into the model 𝑀. (Contributed by AV, 13-Oct-2023.)
Assertion
Ref Expression
satfrnmapom ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω))

Proof of Theorem satfrnmapom
Dummy variables 𝑎 𝑏 𝑓 𝑖 𝑗 𝑢 𝑣 𝑥 𝑦 𝑧 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6861 . . . . . . . . 9 (𝑎 = ∅ → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘∅))
21rneqd 5905 . . . . . . . 8 (𝑎 = ∅ → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘∅))
32eleq2d 2815 . . . . . . 7 (𝑎 = ∅ → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅)))
43imbi1d 341 . . . . . 6 (𝑎 = ∅ → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω))))
54imbi2d 340 . . . . 5 (𝑎 = ∅ → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
6 fveq2 6861 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑏))
76rneqd 5905 . . . . . . . 8 (𝑎 = 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑏))
87eleq2d 2815 . . . . . . 7 (𝑎 = 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏)))
98imbi1d 341 . . . . . 6 (𝑎 = 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
109imbi2d 340 . . . . 5 (𝑎 = 𝑏 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
11 fveq2 6861 . . . . . . . . 9 (𝑎 = suc 𝑏 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘suc 𝑏))
1211rneqd 5905 . . . . . . . 8 (𝑎 = suc 𝑏 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘suc 𝑏))
1312eleq2d 2815 . . . . . . 7 (𝑎 = suc 𝑏 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏)))
1413imbi1d 341 . . . . . 6 (𝑎 = suc 𝑏 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
1514imbi2d 340 . . . . 5 (𝑎 = suc 𝑏 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
16 fveq2 6861 . . . . . . . . 9 (𝑎 = 𝑁 → ((𝑀 Sat 𝐸)‘𝑎) = ((𝑀 Sat 𝐸)‘𝑁))
1716rneqd 5905 . . . . . . . 8 (𝑎 = 𝑁 → ran ((𝑀 Sat 𝐸)‘𝑎) = ran ((𝑀 Sat 𝐸)‘𝑁))
1817eleq2d 2815 . . . . . . 7 (𝑎 = 𝑁 → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) ↔ 𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁)))
1918imbi1d 341 . . . . . 6 (𝑎 = 𝑁 → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω)) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
2019imbi2d 340 . . . . 5 (𝑎 = 𝑁 → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑎) → 𝑛 ∈ 𝒫 (𝑀m ω))) ↔ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
21 eqid 2730 . . . . . . . . 9 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
2221satfv0 35352 . . . . . . . 8 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘∅) = {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
2322rneqd 5905 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → ran ((𝑀 Sat 𝐸)‘∅) = ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
2423eleq2d 2815 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) ↔ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}))
25 rnopab 5921 . . . . . . . 8 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} = {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})}
2625eleq2i 2821 . . . . . . 7 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})})
27 vex 3454 . . . . . . . . . 10 𝑛 ∈ V
28 eqeq1 2734 . . . . . . . . . . . . 13 (𝑦 = 𝑛 → (𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ↔ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
2928anbi2d 630 . . . . . . . . . . . 12 (𝑦 = 𝑛 → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
30292rexbidv 3203 . . . . . . . . . . 11 (𝑦 = 𝑛 → (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
3130exbidv 1921 . . . . . . . . . 10 (𝑦 = 𝑛 → (∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) ↔ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})))
3227, 31elab 3649 . . . . . . . . 9 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} ↔ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}))
33 ovex 7423 . . . . . . . . . . . . . . 15 (𝑀m ω) ∈ V
34 ssrab2 4046 . . . . . . . . . . . . . . 15 {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ⊆ (𝑀m ω)
3533, 34elpwi2 5293 . . . . . . . . . . . . . 14 {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ∈ 𝒫 (𝑀m ω)
36 eleq1 2817 . . . . . . . . . . . . . 14 (𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} ∈ 𝒫 (𝑀m ω)))
3735, 36mpbiri 258 . . . . . . . . . . . . 13 (𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)} → 𝑛 ∈ 𝒫 (𝑀m ω))
3837adantl 481 . . . . . . . . . . . 12 ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
3938a1i 11 . . . . . . . . . . 11 ((𝑖 ∈ ω ∧ 𝑗 ∈ ω) → ((𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω)))
4039rexlimivv 3180 . . . . . . . . . 10 (∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
4140exlimiv 1930 . . . . . . . . 9 (∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑛 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
4232, 41sylbi 217 . . . . . . . 8 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω))
4342a1i 11 . . . . . . 7 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω)))
4426, 43biimtrid 242 . . . . . 6 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑖 ∈ ω ∃𝑗 ∈ ω (𝑥 = (𝑖𝑔𝑗) ∧ 𝑦 = {𝑓 ∈ (𝑀m ω) ∣ (𝑓𝑖)𝐸(𝑓𝑗)})} → 𝑛 ∈ 𝒫 (𝑀m ω)))
4524, 44sylbid 240 . . . . 5 ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘∅) → 𝑛 ∈ 𝒫 (𝑀m ω)))
4621satfvsuc 35355 . . . . . . . . . . . . . . 15 ((𝑀𝑉𝐸𝑊𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
47463expa 1118 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ((𝑀 Sat 𝐸)‘suc 𝑏) = (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
4847rneqd 5905 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = ran (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
49 rnun 6121 . . . . . . . . . . . . 13 ran (((𝑀 Sat 𝐸)‘𝑏) ∪ {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
5048, 49eqtrdi 2781 . . . . . . . . . . . 12 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → ran ((𝑀 Sat 𝐸)‘suc 𝑏) = (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
5150eleq2d 2815 . . . . . . . . . . 11 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ 𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})))
52 elun 4119 . . . . . . . . . . . 12 (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}))
53 rnopab 5921 . . . . . . . . . . . . . . 15 ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} = {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}
5453eleq2i 2821 . . . . . . . . . . . . . 14 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ 𝑛 ∈ {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))})
55 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → (𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ↔ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))))
5655anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
5756rexbidv 3158 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ↔ ∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))))
58 eqeq1 2734 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑛 → (𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ↔ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))
5958anbi2d 630 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑛 → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6059rexbidv 3158 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑛 → (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) ↔ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6157, 60orbi12d 918 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑛 → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6261rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑛 → (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6362exbidv 1921 . . . . . . . . . . . . . . 15 (𝑦 = 𝑛 → (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6427, 63elab 3649 . . . . . . . . . . . . . 14 (𝑛 ∈ {𝑦 ∣ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6554, 64bitri 275 . . . . . . . . . . . . 13 (𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))} ↔ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))
6665orbi2i 912 . . . . . . . . . . . 12 ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ 𝑛 ∈ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6752, 66bitri 275 . . . . . . . . . . 11 (𝑛 ∈ (ran ((𝑀 Sat 𝐸)‘𝑏) ∪ ran {⟨𝑥, 𝑦⟩ ∣ ∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑦 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑦 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))}) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))
6851, 67bitrdi 287 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ 𝑏 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
6968expcom 413 . . . . . . . . 9 (𝑏 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))))
7069adantr 480 . . . . . . . 8 ((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))))))
7170imp 406 . . . . . . 7 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) ↔ (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})))))
72 simpr 484 . . . . . . . . 9 ((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))))
7372imp 406 . . . . . . . 8 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))
74 difss 4102 . . . . . . . . . . . . . . . . . 18 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ⊆ (𝑀m ω)
7533, 74elpwi2 5293 . . . . . . . . . . . . . . . . 17 ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ∈ 𝒫 (𝑀m ω)
76 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) ∈ 𝒫 (𝑀m ω)))
7775, 76mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))) → 𝑛 ∈ 𝒫 (𝑀m ω))
7877adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑛 ∈ 𝒫 (𝑀m ω))
7978adantl 481 . . . . . . . . . . . . . 14 ((𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏) ∧ (𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣))))) → 𝑛 ∈ 𝒫 (𝑀m ω))
8079rexlimiva 3127 . . . . . . . . . . . . 13 (∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) → 𝑛 ∈ 𝒫 (𝑀m ω))
81 ssrab2 4046 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ⊆ (𝑀m ω)
8233, 81elpwi2 5293 . . . . . . . . . . . . . . . . 17 {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ∈ 𝒫 (𝑀m ω)
83 eleq1 2817 . . . . . . . . . . . . . . . . 17 (𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} → (𝑛 ∈ 𝒫 (𝑀m ω) ↔ {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} ∈ 𝒫 (𝑀m ω)))
8482, 83mpbiri 258 . . . . . . . . . . . . . . . 16 (𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)} → 𝑛 ∈ 𝒫 (𝑀m ω))
8584adantl 481 . . . . . . . . . . . . . . 15 ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
8685a1i 11 . . . . . . . . . . . . . 14 (𝑖 ∈ ω → ((𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω)))
8786rexlimiv 3128 . . . . . . . . . . . . 13 (∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}) → 𝑛 ∈ 𝒫 (𝑀m ω))
8880, 87jaoi 857 . . . . . . . . . . . 12 ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
8988a1i 11 . . . . . . . . . . 11 (𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏) → ((∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9089rexlimiv 3128 . . . . . . . . . 10 (∃𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
9190exlimiv 1930 . . . . . . . . 9 (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω))
9291a1i 11 . . . . . . . 8 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)})) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9373, 92jaod 859 . . . . . . 7 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → ((𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) ∨ ∃𝑥𝑢 ∈ ((𝑀 Sat 𝐸)‘𝑏)(∃𝑣 ∈ ((𝑀 Sat 𝐸)‘𝑏)(𝑥 = ((1st𝑢)⊼𝑔(1st𝑣)) ∧ 𝑛 = ((𝑀m ω) ∖ ((2nd𝑢) ∩ (2nd𝑣)))) ∨ ∃𝑖 ∈ ω (𝑥 = ∀𝑔𝑖(1st𝑢) ∧ 𝑛 = {𝑎 ∈ (𝑀m ω) ∣ ∀𝑧𝑀 ({⟨𝑖, 𝑧⟩} ∪ (𝑎 ↾ (ω ∖ {𝑖}))) ∈ (2nd𝑢)}))) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9471, 93sylbid 240 . . . . . 6 (((𝑏 ∈ ω ∧ ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))) ∧ (𝑀𝑉𝐸𝑊)) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9594exp31 419 . . . . 5 (𝑏 ∈ ω → (((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω))) → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘suc 𝑏) → 𝑛 ∈ 𝒫 (𝑀m ω)))))
965, 10, 15, 20, 45, 95finds 7875 . . . 4 (𝑁 ∈ ω → ((𝑀𝑉𝐸𝑊) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
9796com12 32 . . 3 ((𝑀𝑉𝐸𝑊) → (𝑁 ∈ ω → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω))))
98973impia 1117 . 2 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → (𝑛 ∈ ran ((𝑀 Sat 𝐸)‘𝑁) → 𝑛 ∈ 𝒫 (𝑀m ω)))
9998ssrdv 3955 1 ((𝑀𝑉𝐸𝑊𝑁 ∈ ω) → ran ((𝑀 Sat 𝐸)‘𝑁) ⊆ 𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {csn 4592  cop 4598   class class class wbr 5110  {copab 5172  ran crn 5642  cres 5643  suc csuc 6337  cfv 6514  (class class class)co 7390  ωcom 7845  1st c1st 7969  2nd c2nd 7970  m cmap 8802  𝑔cgoe 35327  𝑔cgna 35328  𝑔cgol 35329   Sat csat 35330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-goel 35334  df-sat 35337
This theorem is referenced by:  satff  35404
  Copyright terms: Public domain W3C validator