MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxf Structured version   Visualization version   GIF version

Theorem ixxf 13258
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxf 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxf
StepHypRef Expression
1 xrex 12888 . . . 4 * ∈ V
2 ssrab2 4031 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ⊆ ℝ*
31, 2elpwi2 5274 . . 3 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
43rgen2w 3049 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
5 ixx.1 . . 3 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65fmpo 8003 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*)
74, 6mpbi 230 1 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3394  Vcvv 3436  𝒫 cpw 4551   class class class wbr 5092   × cxp 5617  wf 6478  cmpo 7351  *cxr 11148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-xr 11153
This theorem is referenced by:  ixxex  13259  ixxssxr  13260  elixx3g  13261  ndmioo  13275  iccf  13351  iocpnfordt  23100  icomnfordt  23101  tpr2rico  33895  icoreresf  37346  icoreelrn  37355  relowlpssretop  37358  dmico  45564
  Copyright terms: Public domain W3C validator