MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixxf Structured version   Visualization version   GIF version

Theorem ixxf 13077
Description: The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
Hypothesis
Ref Expression
ixx.1 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
Assertion
Ref Expression
ixxf 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Distinct variable groups:   𝑥,𝑦,𝑧,𝑅   𝑥,𝑆,𝑦,𝑧
Allowed substitution hints:   𝑂(𝑥,𝑦,𝑧)

Proof of Theorem ixxf
StepHypRef Expression
1 xrex 12715 . . . 4 * ∈ V
2 ssrab2 4013 . . . 4 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ⊆ ℝ*
31, 2elpwi2 5269 . . 3 {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
43rgen2w 3077 . 2 𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*
5 ixx.1 . . 3 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)})
65fmpo 7898 . 2 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧𝑧𝑆𝑦)} ∈ 𝒫 ℝ*𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*)
74, 6mpbi 229 1 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ*
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  Vcvv 3430  𝒫 cpw 4534   class class class wbr 5074   × cxp 5583  wf 6423  cmpo 7270  *cxr 10996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351  ax-un 7579  ax-cnex 10915  ax-resscn 10916
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5485  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-fv 6435  df-oprab 7272  df-mpo 7273  df-1st 7821  df-2nd 7822  df-xr 11001
This theorem is referenced by:  ixxex  13078  ixxssxr  13079  elixx3g  13080  ndmioo  13094  iccf  13168  iocpnfordt  22354  icomnfordt  22355  tpr2rico  31848  icoreresf  35509  icoreelrn  35518  relowlpssretop  35521  dmico  43062
  Copyright terms: Public domain W3C validator