MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkotf Structured version   Visualization version   GIF version

Theorem xkotf 22785
Description: Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkotf 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkotf
StepHypRef Expression
1 ovex 7340 . . . 4 (𝑅 Cn 𝑆) ∈ V
2 ssrab2 4019 . . . 4 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ⊆ (𝑅 Cn 𝑆)
31, 2elpwi2 5279 . . 3 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆)
43rgen2w 3066 . 2 𝑘𝐾𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆)
5 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
65fmpo 7940 . 2 (∀𝑘𝐾𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) ↔ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆))
74, 6mpbi 229 1 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2104  wral 3061  {crab 3330  Vcvv 3437  wss 3892  𝒫 cpw 4539   cuni 4844   × cxp 5598  cima 5603  wf 6454  (class class class)co 7307  cmpo 7309  t crest 17180   Cn ccn 22424  Compccmp 22586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-1st 7863  df-2nd 7864
This theorem is referenced by:  xkoopn  22789  xkouni  22799  xkoccn  22819  xkoco1cn  22857  xkoco2cn  22858  xkococn  22860  xkoinjcn  22887
  Copyright terms: Public domain W3C validator