MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkotf Structured version   Visualization version   GIF version

Theorem xkotf 23609
Description: Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoval.x 𝑋 = 𝑅
xkoval.k 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅t 𝑥) ∈ Comp}
xkoval.t 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
Assertion
Ref Expression
xkotf 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
Distinct variable groups:   𝑣,𝑘,𝐾   𝑓,𝑘,𝑣,𝑥,𝑅   𝑆,𝑓,𝑘,𝑣,𝑥   𝑘,𝑋,𝑥
Allowed substitution hints:   𝑇(𝑥,𝑣,𝑓,𝑘)   𝐾(𝑥,𝑓)   𝑋(𝑣,𝑓)

Proof of Theorem xkotf
StepHypRef Expression
1 ovex 7464 . . . 4 (𝑅 Cn 𝑆) ∈ V
2 ssrab2 4090 . . . 4 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ⊆ (𝑅 Cn 𝑆)
31, 2elpwi2 5341 . . 3 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆)
43rgen2w 3064 . 2 𝑘𝐾𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆)
5 xkoval.t . . 3 𝑇 = (𝑘𝐾, 𝑣𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣})
65fmpo 8092 . 2 (∀𝑘𝐾𝑣𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) ↔ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆))
74, 6mpbi 230 1 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  wral 3059  {crab 3433  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912   × cxp 5687  cima 5692  wf 6559  (class class class)co 7431  cmpo 7433  t crest 17467   Cn ccn 23248  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014
This theorem is referenced by:  xkoopn  23613  xkouni  23623  xkoccn  23643  xkoco1cn  23681  xkoco2cn  23682  xkococn  23684  xkoinjcn  23711
  Copyright terms: Public domain W3C validator