Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xkotf | Structured version Visualization version GIF version |
Description: Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
Ref | Expression |
---|---|
xkotf | ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7340 | . . . 4 ⊢ (𝑅 Cn 𝑆) ∈ V | |
2 | ssrab2 4019 | . . . 4 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ⊆ (𝑅 Cn 𝑆) | |
3 | 1, 2 | elpwi2 5279 | . . 3 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
4 | 3 | rgen2w 3066 | . 2 ⊢ ∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
5 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
6 | 5 | fmpo 7940 | . 2 ⊢ (∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) ↔ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)) |
7 | 4, 6 | mpbi 229 | 1 ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2104 ∀wral 3061 {crab 3330 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4844 × cxp 5598 “ cima 5603 ⟶wf 6454 (class class class)co 7307 ∈ cmpo 7309 ↾t crest 17180 Cn ccn 22424 Compccmp 22586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-fv 6466 df-ov 7310 df-oprab 7311 df-mpo 7312 df-1st 7863 df-2nd 7864 |
This theorem is referenced by: xkoopn 22789 xkouni 22799 xkoccn 22819 xkoco1cn 22857 xkoco2cn 22858 xkococn 22860 xkoinjcn 22887 |
Copyright terms: Public domain | W3C validator |