![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xkotf | Structured version Visualization version GIF version |
Description: Functionality of function π. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
xkoval.x | β’ π = βͺ π |
xkoval.k | β’ πΎ = {π₯ β π« π β£ (π βΎt π₯) β Comp} |
xkoval.t | β’ π = (π β πΎ, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}) |
Ref | Expression |
---|---|
xkotf | β’ π:(πΎ Γ π)βΆπ« (π Cn π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7438 | . . . 4 β’ (π Cn π) β V | |
2 | ssrab2 4076 | . . . 4 β’ {π β (π Cn π) β£ (π β π) β π£} β (π Cn π) | |
3 | 1, 2 | elpwi2 5345 | . . 3 β’ {π β (π Cn π) β£ (π β π) β π£} β π« (π Cn π) |
4 | 3 | rgen2w 3066 | . 2 β’ βπ β πΎ βπ£ β π {π β (π Cn π) β£ (π β π) β π£} β π« (π Cn π) |
5 | xkoval.t | . . 3 β’ π = (π β πΎ, π£ β π β¦ {π β (π Cn π) β£ (π β π) β π£}) | |
6 | 5 | fmpo 8050 | . 2 β’ (βπ β πΎ βπ£ β π {π β (π Cn π) β£ (π β π) β π£} β π« (π Cn π) β π:(πΎ Γ π)βΆπ« (π Cn π)) |
7 | 4, 6 | mpbi 229 | 1 β’ π:(πΎ Γ π)βΆπ« (π Cn π) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 βwral 3061 {crab 3432 Vcvv 3474 β wss 3947 π« cpw 4601 βͺ cuni 4907 Γ cxp 5673 β cima 5678 βΆwf 6536 (class class class)co 7405 β cmpo 7407 βΎt crest 17362 Cn ccn 22719 Compccmp 22881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 |
This theorem is referenced by: xkoopn 23084 xkouni 23094 xkoccn 23114 xkoco1cn 23152 xkoco2cn 23153 xkococn 23155 xkoinjcn 23182 |
Copyright terms: Public domain | W3C validator |