Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xkotf | Structured version Visualization version GIF version |
Description: Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
Ref | Expression |
---|---|
xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
Ref | Expression |
---|---|
xkotf | ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7301 | . . . 4 ⊢ (𝑅 Cn 𝑆) ∈ V | |
2 | ssrab2 4017 | . . . 4 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ⊆ (𝑅 Cn 𝑆) | |
3 | 1, 2 | elpwi2 5273 | . . 3 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
4 | 3 | rgen2w 3078 | . 2 ⊢ ∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
5 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
6 | 5 | fmpo 7894 | . 2 ⊢ (∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) ↔ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)) |
7 | 4, 6 | mpbi 229 | 1 ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ∀wral 3065 {crab 3069 Vcvv 3430 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 × cxp 5586 “ cima 5591 ⟶wf 6426 (class class class)co 7268 ∈ cmpo 7270 ↾t crest 17112 Cn ccn 22356 Compccmp 22518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: xkoopn 22721 xkouni 22731 xkoccn 22751 xkoco1cn 22789 xkoco2cn 22790 xkococn 22792 xkoinjcn 22819 |
Copyright terms: Public domain | W3C validator |