| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xkotf | Structured version Visualization version GIF version | ||
| Description: Functionality of function 𝑇. (Contributed by Mario Carneiro, 19-Mar-2015.) |
| Ref | Expression |
|---|---|
| xkoval.x | ⊢ 𝑋 = ∪ 𝑅 |
| xkoval.k | ⊢ 𝐾 = {𝑥 ∈ 𝒫 𝑋 ∣ (𝑅 ↾t 𝑥) ∈ Comp} |
| xkoval.t | ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) |
| Ref | Expression |
|---|---|
| xkotf | ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7443 | . . . 4 ⊢ (𝑅 Cn 𝑆) ∈ V | |
| 2 | ssrab2 4060 | . . . 4 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ⊆ (𝑅 Cn 𝑆) | |
| 3 | 1, 2 | elpwi2 5310 | . . 3 ⊢ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
| 4 | 3 | rgen2w 3057 | . 2 ⊢ ∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) |
| 5 | xkoval.t | . . 3 ⊢ 𝑇 = (𝑘 ∈ 𝐾, 𝑣 ∈ 𝑆 ↦ {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣}) | |
| 6 | 5 | fmpo 8072 | . 2 ⊢ (∀𝑘 ∈ 𝐾 ∀𝑣 ∈ 𝑆 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ 𝑘) ⊆ 𝑣} ∈ 𝒫 (𝑅 Cn 𝑆) ↔ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆)) |
| 7 | 4, 6 | mpbi 230 | 1 ⊢ 𝑇:(𝐾 × 𝑆)⟶𝒫 (𝑅 Cn 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 × cxp 5657 “ cima 5662 ⟶wf 6532 (class class class)co 7410 ∈ cmpo 7412 ↾t crest 17439 Cn ccn 23167 Compccmp 23329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 |
| This theorem is referenced by: xkoopn 23532 xkouni 23542 xkoccn 23562 xkoco1cn 23600 xkoco2cn 23601 xkococn 23603 xkoinjcn 23630 |
| Copyright terms: Public domain | W3C validator |