| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for prdsval 17359. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17359, dependency on df-hom 17185 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem | ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑣 ∈ V | |
| 2 | ovex 7379 | . . 3 ⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V | |
| 3 | 2 | pwex 5318 | . 2 ⊢ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V |
| 4 | ovssunirn 7382 | . . . . . . . 8 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (Hom ‘(𝑟‘𝑥)) | |
| 5 | homid 17316 | . . . . . . . . . . 11 ⊢ Hom = Slot (Hom ‘ndx) | |
| 6 | 5 | strfvss 17098 | . . . . . . . . . 10 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
| 7 | fvssunirn 6853 | . . . . . . . . . . 11 ⊢ (𝑟‘𝑥) ⊆ ∪ ran 𝑟 | |
| 8 | rnss 5879 | . . . . . . . . . . 11 ⊢ ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟) | |
| 9 | uniss 4867 | . . . . . . . . . . 11 ⊢ (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟) | |
| 10 | 7, 8, 9 | mp2b 10 | . . . . . . . . . 10 ⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟 |
| 11 | 6, 10 | sstri 3944 | . . . . . . . . 9 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
| 12 | rnss 5879 | . . . . . . . . 9 ⊢ ((Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟) | |
| 13 | uniss 4867 | . . . . . . . . 9 ⊢ (ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . . . . 8 ⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 15 | 4, 14 | sstri 3944 | . . . . . . 7 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 16 | 15 | rgenw 3051 | . . . . . 6 ⊢ ∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 17 | ss2ixp 8834 | . . . . . 6 ⊢ (∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) | |
| 18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
| 19 | vex 3440 | . . . . . . 7 ⊢ 𝑟 ∈ V | |
| 20 | 19 | dmex 7839 | . . . . . 6 ⊢ dom 𝑟 ∈ V |
| 21 | 19 | rnex 7840 | . . . . . . . . . . 11 ⊢ ran 𝑟 ∈ V |
| 22 | 21 | uniex 7674 | . . . . . . . . . 10 ⊢ ∪ ran 𝑟 ∈ V |
| 23 | 22 | rnex 7840 | . . . . . . . . 9 ⊢ ran ∪ ran 𝑟 ∈ V |
| 24 | 23 | uniex 7674 | . . . . . . . 8 ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 25 | 24 | rnex 7840 | . . . . . . 7 ⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 26 | 25 | uniex 7674 | . . . . . 6 ⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 27 | 20, 26 | ixpconst 8831 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 28 | 18, 27 | sseqtri 3983 | . . . 4 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 29 | 2, 28 | elpwi2 5273 | . . 3 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 30 | 29 | rgen2w 3052 | . 2 ⊢ ∀𝑓 ∈ 𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 31 | 1, 1, 3, 30 | mpoexw 8010 | 1 ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 dom cdm 5616 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ↑m cmap 8750 Xcixp 8821 ndxcnx 17104 Hom chom 17172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-dec 12589 df-slot 17093 df-ndx 17105 df-hom 17185 |
| This theorem is referenced by: prdsval 17359 |
| Copyright terms: Public domain | W3C validator |