![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsvallem | Structured version Visualization version GIF version |
Description: Lemma for prdsval 17400. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17400, dependency on df-hom 17220 removed. (Revised by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
prdsvallem | ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3470 | . 2 ⊢ 𝑣 ∈ V | |
2 | ovex 7434 | . . 3 ⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V | |
3 | 2 | pwex 5368 | . 2 ⊢ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V |
4 | ovssunirn 7437 | . . . . . . . 8 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (Hom ‘(𝑟‘𝑥)) | |
5 | homid 17356 | . . . . . . . . . . 11 ⊢ Hom = Slot (Hom ‘ndx) | |
6 | 5 | strfvss 17119 | . . . . . . . . . 10 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
7 | fvssunirn 6914 | . . . . . . . . . . 11 ⊢ (𝑟‘𝑥) ⊆ ∪ ran 𝑟 | |
8 | rnss 5928 | . . . . . . . . . . 11 ⊢ ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟) | |
9 | uniss 4907 | . . . . . . . . . . 11 ⊢ (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟) | |
10 | 7, 8, 9 | mp2b 10 | . . . . . . . . . 10 ⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟 |
11 | 6, 10 | sstri 3983 | . . . . . . . . 9 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
12 | rnss 5928 | . . . . . . . . 9 ⊢ ((Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟) | |
13 | uniss 4907 | . . . . . . . . 9 ⊢ (ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) | |
14 | 11, 12, 13 | mp2b 10 | . . . . . . . 8 ⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
15 | 4, 14 | sstri 3983 | . . . . . . 7 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
16 | 15 | rgenw 3057 | . . . . . 6 ⊢ ∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
17 | ss2ixp 8900 | . . . . . 6 ⊢ (∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) | |
18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
19 | vex 3470 | . . . . . . 7 ⊢ 𝑟 ∈ V | |
20 | 19 | dmex 7895 | . . . . . 6 ⊢ dom 𝑟 ∈ V |
21 | 19 | rnex 7896 | . . . . . . . . . . 11 ⊢ ran 𝑟 ∈ V |
22 | 21 | uniex 7724 | . . . . . . . . . 10 ⊢ ∪ ran 𝑟 ∈ V |
23 | 22 | rnex 7896 | . . . . . . . . 9 ⊢ ran ∪ ran 𝑟 ∈ V |
24 | 23 | uniex 7724 | . . . . . . . 8 ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
25 | 24 | rnex 7896 | . . . . . . 7 ⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
26 | 25 | uniex 7724 | . . . . . 6 ⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
27 | 20, 26 | ixpconst 8897 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
28 | 18, 27 | sseqtri 4010 | . . . 4 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
29 | 2, 28 | elpwi2 5336 | . . 3 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
30 | 29 | rgen2w 3058 | . 2 ⊢ ∀𝑓 ∈ 𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
31 | 1, 1, 3, 30 | mpoexw 8058 | 1 ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 ∀wral 3053 Vcvv 3466 ⊆ wss 3940 𝒫 cpw 4594 ∪ cuni 4899 dom cdm 5666 ran crn 5667 ‘cfv 6533 (class class class)co 7401 ∈ cmpo 7403 ↑m cmap 8816 Xcixp 8887 ndxcnx 17125 Hom chom 17207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11247 df-mnf 11248 df-ltxr 11250 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-dec 12675 df-slot 17114 df-ndx 17126 df-hom 17220 |
This theorem is referenced by: prdsval 17400 |
Copyright terms: Public domain | W3C validator |