| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for prdsval 17467. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17467, dependency on df-hom 17293 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem | ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑣 ∈ V | |
| 2 | ovex 7436 | . . 3 ⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V | |
| 3 | 2 | pwex 5350 | . 2 ⊢ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V |
| 4 | ovssunirn 7439 | . . . . . . . 8 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (Hom ‘(𝑟‘𝑥)) | |
| 5 | homid 17424 | . . . . . . . . . . 11 ⊢ Hom = Slot (Hom ‘ndx) | |
| 6 | 5 | strfvss 17204 | . . . . . . . . . 10 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
| 7 | fvssunirn 6908 | . . . . . . . . . . 11 ⊢ (𝑟‘𝑥) ⊆ ∪ ran 𝑟 | |
| 8 | rnss 5919 | . . . . . . . . . . 11 ⊢ ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟) | |
| 9 | uniss 4891 | . . . . . . . . . . 11 ⊢ (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟) | |
| 10 | 7, 8, 9 | mp2b 10 | . . . . . . . . . 10 ⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟 |
| 11 | 6, 10 | sstri 3968 | . . . . . . . . 9 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
| 12 | rnss 5919 | . . . . . . . . 9 ⊢ ((Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟) | |
| 13 | uniss 4891 | . . . . . . . . 9 ⊢ (ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . . . . 8 ⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 15 | 4, 14 | sstri 3968 | . . . . . . 7 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 16 | 15 | rgenw 3055 | . . . . . 6 ⊢ ∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 17 | ss2ixp 8922 | . . . . . 6 ⊢ (∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) | |
| 18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
| 19 | vex 3463 | . . . . . . 7 ⊢ 𝑟 ∈ V | |
| 20 | 19 | dmex 7903 | . . . . . 6 ⊢ dom 𝑟 ∈ V |
| 21 | 19 | rnex 7904 | . . . . . . . . . . 11 ⊢ ran 𝑟 ∈ V |
| 22 | 21 | uniex 7733 | . . . . . . . . . 10 ⊢ ∪ ran 𝑟 ∈ V |
| 23 | 22 | rnex 7904 | . . . . . . . . 9 ⊢ ran ∪ ran 𝑟 ∈ V |
| 24 | 23 | uniex 7733 | . . . . . . . 8 ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 25 | 24 | rnex 7904 | . . . . . . 7 ⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 26 | 25 | uniex 7733 | . . . . . 6 ⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 27 | 20, 26 | ixpconst 8919 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 28 | 18, 27 | sseqtri 4007 | . . . 4 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 29 | 2, 28 | elpwi2 5305 | . . 3 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 30 | 29 | rgen2w 3056 | . 2 ⊢ ∀𝑓 ∈ 𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 31 | 1, 1, 3, 30 | mpoexw 8075 | 1 ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 ∀wral 3051 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 ran crn 5655 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 ↑m cmap 8838 Xcixp 8909 ndxcnx 17210 Hom chom 17280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-map 8840 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-ltxr 11272 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-dec 12707 df-slot 17199 df-ndx 17211 df-hom 17293 |
| This theorem is referenced by: prdsval 17467 |
| Copyright terms: Public domain | W3C validator |