MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvallem Structured version   Visualization version   GIF version

Theorem prdsvallem 17399
Description: Lemma for prdsval 17400. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17400, dependency on df-hom 17220 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) ∈ V
Distinct variable groups:   π‘₯,π‘Ÿ   𝑓,𝑔,π‘Ÿ   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 3470 . 2 𝑣 ∈ V
2 ovex 7434 . . 3 (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ) ∈ V
32pwex 5368 . 2 𝒫 (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ) ∈ V
4 ovssunirn 7437 . . . . . . . 8 ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran (Hom β€˜(π‘Ÿβ€˜π‘₯))
5 homid 17356 . . . . . . . . . . 11 Hom = Slot (Hom β€˜ndx)
65strfvss 17119 . . . . . . . . . 10 (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† βˆͺ ran (π‘Ÿβ€˜π‘₯)
7 fvssunirn 6914 . . . . . . . . . . 11 (π‘Ÿβ€˜π‘₯) βŠ† βˆͺ ran π‘Ÿ
8 rnss 5928 . . . . . . . . . . 11 ((π‘Ÿβ€˜π‘₯) βŠ† βˆͺ ran π‘Ÿ β†’ ran (π‘Ÿβ€˜π‘₯) βŠ† ran βˆͺ ran π‘Ÿ)
9 uniss 4907 . . . . . . . . . . 11 (ran (π‘Ÿβ€˜π‘₯) βŠ† ran βˆͺ ran π‘Ÿ β†’ βˆͺ ran (π‘Ÿβ€˜π‘₯) βŠ† βˆͺ ran βˆͺ ran π‘Ÿ)
107, 8, 9mp2b 10 . . . . . . . . . 10 βˆͺ ran (π‘Ÿβ€˜π‘₯) βŠ† βˆͺ ran βˆͺ ran π‘Ÿ
116, 10sstri 3983 . . . . . . . . 9 (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran π‘Ÿ
12 rnss 5928 . . . . . . . . 9 ((Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran π‘Ÿ β†’ ran (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† ran βˆͺ ran βˆͺ ran π‘Ÿ)
13 uniss 4907 . . . . . . . . 9 (ran (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† ran βˆͺ ran βˆͺ ran π‘Ÿ β†’ βˆͺ ran (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ)
1411, 12, 13mp2b 10 . . . . . . . 8 βˆͺ ran (Hom β€˜(π‘Ÿβ€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ
154, 14sstri 3983 . . . . . . 7 ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ
1615rgenw 3057 . . . . . 6 βˆ€π‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ
17 ss2ixp 8900 . . . . . 6 (βˆ€π‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ β†’ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† Xπ‘₯ ∈ dom π‘Ÿβˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ)
1816, 17ax-mp 5 . . . . 5 Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† Xπ‘₯ ∈ dom π‘Ÿβˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ
19 vex 3470 . . . . . . 7 π‘Ÿ ∈ V
2019dmex 7895 . . . . . 6 dom π‘Ÿ ∈ V
2119rnex 7896 . . . . . . . . . . 11 ran π‘Ÿ ∈ V
2221uniex 7724 . . . . . . . . . 10 βˆͺ ran π‘Ÿ ∈ V
2322rnex 7896 . . . . . . . . 9 ran βˆͺ ran π‘Ÿ ∈ V
2423uniex 7724 . . . . . . . 8 βˆͺ ran βˆͺ ran π‘Ÿ ∈ V
2524rnex 7896 . . . . . . 7 ran βˆͺ ran βˆͺ ran π‘Ÿ ∈ V
2625uniex 7724 . . . . . 6 βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ∈ V
2720, 26ixpconst 8897 . . . . 5 Xπ‘₯ ∈ dom π‘Ÿβˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ = (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ)
2818, 27sseqtri 4010 . . . 4 Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) βŠ† (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ)
292, 28elpwi2 5336 . . 3 Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) ∈ 𝒫 (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ)
3029rgen2w 3058 . 2 βˆ€π‘“ ∈ 𝑣 βˆ€π‘” ∈ 𝑣 Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯)) ∈ 𝒫 (βˆͺ ran βˆͺ ran βˆͺ ran π‘Ÿ ↑m dom π‘Ÿ)
311, 1, 3, 30mpoexw 8058 1 (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ Xπ‘₯ ∈ dom π‘Ÿ((π‘“β€˜π‘₯)(Hom β€˜(π‘Ÿβ€˜π‘₯))(π‘”β€˜π‘₯))) ∈ V
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2098  βˆ€wral 3053  Vcvv 3466   βŠ† wss 3940  π’« cpw 4594  βˆͺ cuni 4899  dom cdm 5666  ran crn 5667  β€˜cfv 6533  (class class class)co 7401   ∈ cmpo 7403   ↑m cmap 8816  Xcixp 8887  ndxcnx 17125  Hom chom 17207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-map 8818  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-ltxr 11250  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-dec 12675  df-slot 17114  df-ndx 17126  df-hom 17220
This theorem is referenced by:  prdsval  17400
  Copyright terms: Public domain W3C validator