| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prdsvallem | Structured version Visualization version GIF version | ||
| Description: Lemma for prdsval 17425. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17425, dependency on df-hom 17251 removed. (Revised by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| prdsvallem | ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑣 ∈ V | |
| 2 | ovex 7423 | . . 3 ⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V | |
| 3 | 2 | pwex 5338 | . 2 ⊢ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V |
| 4 | ovssunirn 7426 | . . . . . . . 8 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (Hom ‘(𝑟‘𝑥)) | |
| 5 | homid 17382 | . . . . . . . . . . 11 ⊢ Hom = Slot (Hom ‘ndx) | |
| 6 | 5 | strfvss 17164 | . . . . . . . . . 10 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
| 7 | fvssunirn 6894 | . . . . . . . . . . 11 ⊢ (𝑟‘𝑥) ⊆ ∪ ran 𝑟 | |
| 8 | rnss 5906 | . . . . . . . . . . 11 ⊢ ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟) | |
| 9 | uniss 4882 | . . . . . . . . . . 11 ⊢ (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟) | |
| 10 | 7, 8, 9 | mp2b 10 | . . . . . . . . . 10 ⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟 |
| 11 | 6, 10 | sstri 3959 | . . . . . . . . 9 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
| 12 | rnss 5906 | . . . . . . . . 9 ⊢ ((Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟) | |
| 13 | uniss 4882 | . . . . . . . . 9 ⊢ (ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . . . . 8 ⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 15 | 4, 14 | sstri 3959 | . . . . . . 7 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 16 | 15 | rgenw 3049 | . . . . . 6 ⊢ ∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
| 17 | ss2ixp 8886 | . . . . . 6 ⊢ (∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) | |
| 18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
| 19 | vex 3454 | . . . . . . 7 ⊢ 𝑟 ∈ V | |
| 20 | 19 | dmex 7888 | . . . . . 6 ⊢ dom 𝑟 ∈ V |
| 21 | 19 | rnex 7889 | . . . . . . . . . . 11 ⊢ ran 𝑟 ∈ V |
| 22 | 21 | uniex 7720 | . . . . . . . . . 10 ⊢ ∪ ran 𝑟 ∈ V |
| 23 | 22 | rnex 7889 | . . . . . . . . 9 ⊢ ran ∪ ran 𝑟 ∈ V |
| 24 | 23 | uniex 7720 | . . . . . . . 8 ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
| 25 | 24 | rnex 7889 | . . . . . . 7 ⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 26 | 25 | uniex 7720 | . . . . . 6 ⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
| 27 | 20, 26 | ixpconst 8883 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 28 | 18, 27 | sseqtri 3998 | . . . 4 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 29 | 2, 28 | elpwi2 5293 | . . 3 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 30 | 29 | rgen2w 3050 | . 2 ⊢ ∀𝑓 ∈ 𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
| 31 | 1, 1, 3, 30 | mpoexw 8060 | 1 ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ∀wral 3045 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 dom cdm 5641 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ∈ cmpo 7392 ↑m cmap 8802 Xcixp 8873 ndxcnx 17170 Hom chom 17238 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 df-slot 17159 df-ndx 17171 df-hom 17251 |
| This theorem is referenced by: prdsval 17425 |
| Copyright terms: Public domain | W3C validator |