MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvallem Structured version   Visualization version   GIF version

Theorem prdsvallem 17365
Description: Lemma for prdsval 17366. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17366, dependency on df-hom 17192 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 3441 . 2 𝑣 ∈ V
2 ovex 7388 . . 3 ( ran ran ran 𝑟m dom 𝑟) ∈ V
32pwex 5322 . 2 𝒫 ( ran ran ran 𝑟m dom 𝑟) ∈ V
4 ovssunirn 7391 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
5 homid 17323 . . . . . . . . . . 11 Hom = Slot (Hom ‘ndx)
65strfvss 17105 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
7 fvssunirn 6862 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
8 rnss 5885 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
9 uniss 4868 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
107, 8, 9mp2b 10 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
116, 10sstri 3940 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
12 rnss 5885 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
13 uniss 4868 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
1411, 12, 13mp2b 10 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
154, 14sstri 3940 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
1615rgenw 3052 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
17 ss2ixp 8844 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
1816, 17ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
19 vex 3441 . . . . . . 7 𝑟 ∈ V
2019dmex 7848 . . . . . 6 dom 𝑟 ∈ V
2119rnex 7849 . . . . . . . . . . 11 ran 𝑟 ∈ V
2221uniex 7683 . . . . . . . . . 10 ran 𝑟 ∈ V
2322rnex 7849 . . . . . . . . 9 ran ran 𝑟 ∈ V
2423uniex 7683 . . . . . . . 8 ran ran 𝑟 ∈ V
2524rnex 7849 . . . . . . 7 ran ran ran 𝑟 ∈ V
2625uniex 7683 . . . . . 6 ran ran ran 𝑟 ∈ V
2720, 26ixpconst 8841 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟m dom 𝑟)
2818, 27sseqtri 3979 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟m dom 𝑟)
292, 28elpwi2 5277 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟m dom 𝑟)
3029rgen2w 3053 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟m dom 𝑟)
311, 1, 3, 30mpoexw 8019 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  wral 3048  Vcvv 3437  wss 3898  𝒫 cpw 4551   cuni 4860  dom cdm 5621  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357  m cmap 8759  Xcixp 8831  ndxcnx 17111  Hom chom 17179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-ltxr 11162  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-dec 12599  df-slot 17100  df-ndx 17112  df-hom 17192
This theorem is referenced by:  prdsval  17366
  Copyright terms: Public domain W3C validator