MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsvallem Structured version   Visualization version   GIF version

Theorem prdsvallem 17424
Description: Lemma for prdsval 17425. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17425, dependency on df-hom 17251 removed. (Revised by AV, 13-Oct-2024.)
Assertion
Ref Expression
prdsvallem (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Distinct variable groups:   𝑥,𝑟   𝑓,𝑔,𝑟   𝑣,𝑓,𝑔

Proof of Theorem prdsvallem
StepHypRef Expression
1 vex 3454 . 2 𝑣 ∈ V
2 ovex 7423 . . 3 ( ran ran ran 𝑟m dom 𝑟) ∈ V
32pwex 5338 . 2 𝒫 ( ran ran ran 𝑟m dom 𝑟) ∈ V
4 ovssunirn 7426 . . . . . . . 8 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran (Hom ‘(𝑟𝑥))
5 homid 17382 . . . . . . . . . . 11 Hom = Slot (Hom ‘ndx)
65strfvss 17164 . . . . . . . . . 10 (Hom ‘(𝑟𝑥)) ⊆ ran (𝑟𝑥)
7 fvssunirn 6894 . . . . . . . . . . 11 (𝑟𝑥) ⊆ ran 𝑟
8 rnss 5906 . . . . . . . . . . 11 ((𝑟𝑥) ⊆ ran 𝑟 → ran (𝑟𝑥) ⊆ ran ran 𝑟)
9 uniss 4882 . . . . . . . . . . 11 (ran (𝑟𝑥) ⊆ ran ran 𝑟 ran (𝑟𝑥) ⊆ ran ran 𝑟)
107, 8, 9mp2b 10 . . . . . . . . . 10 ran (𝑟𝑥) ⊆ ran ran 𝑟
116, 10sstri 3959 . . . . . . . . 9 (Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟
12 rnss 5906 . . . . . . . . 9 ((Hom ‘(𝑟𝑥)) ⊆ ran ran 𝑟 → ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
13 uniss 4882 . . . . . . . . 9 (ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟)
1411, 12, 13mp2b 10 . . . . . . . 8 ran (Hom ‘(𝑟𝑥)) ⊆ ran ran ran 𝑟
154, 14sstri 3959 . . . . . . 7 ((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
1615rgenw 3049 . . . . . 6 𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟
17 ss2ixp 8886 . . . . . 6 (∀𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ran ran ran 𝑟X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟)
1816, 17ax-mp 5 . . . . 5 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ X𝑥 ∈ dom 𝑟 ran ran ran 𝑟
19 vex 3454 . . . . . . 7 𝑟 ∈ V
2019dmex 7888 . . . . . 6 dom 𝑟 ∈ V
2119rnex 7889 . . . . . . . . . . 11 ran 𝑟 ∈ V
2221uniex 7720 . . . . . . . . . 10 ran 𝑟 ∈ V
2322rnex 7889 . . . . . . . . 9 ran ran 𝑟 ∈ V
2423uniex 7720 . . . . . . . 8 ran ran 𝑟 ∈ V
2524rnex 7889 . . . . . . 7 ran ran ran 𝑟 ∈ V
2625uniex 7720 . . . . . 6 ran ran ran 𝑟 ∈ V
2720, 26ixpconst 8883 . . . . 5 X𝑥 ∈ dom 𝑟 ran ran ran 𝑟 = ( ran ran ran 𝑟m dom 𝑟)
2818, 27sseqtri 3998 . . . 4 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ⊆ ( ran ran ran 𝑟m dom 𝑟)
292, 28elpwi2 5293 . . 3 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟m dom 𝑟)
3029rgen2w 3050 . 2 𝑓𝑣𝑔𝑣 X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥)) ∈ 𝒫 ( ran ran ran 𝑟m dom 𝑟)
311, 1, 3, 30mpoexw 8060 1 (𝑓𝑣, 𝑔𝑣X𝑥 ∈ dom 𝑟((𝑓𝑥)(Hom ‘(𝑟𝑥))(𝑔𝑥))) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  wral 3045  Vcvv 3450  wss 3917  𝒫 cpw 4566   cuni 4874  dom cdm 5641  ran crn 5642  cfv 6514  (class class class)co 7390  cmpo 7392  m cmap 8802  Xcixp 8873  ndxcnx 17170  Hom chom 17238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-ltxr 11220  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-dec 12657  df-slot 17159  df-ndx 17171  df-hom 17251
This theorem is referenced by:  prdsval  17425
  Copyright terms: Public domain W3C validator