![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prdsvallem | Structured version Visualization version GIF version |
Description: Lemma for prdsval 17515. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 17515, dependency on df-hom 17335 removed. (Revised by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
prdsvallem | ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑣 ∈ V | |
2 | ovex 7481 | . . 3 ⊢ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V | |
3 | 2 | pwex 5398 | . 2 ⊢ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) ∈ V |
4 | ovssunirn 7484 | . . . . . . . 8 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran (Hom ‘(𝑟‘𝑥)) | |
5 | homid 17471 | . . . . . . . . . . 11 ⊢ Hom = Slot (Hom ‘ndx) | |
6 | 5 | strfvss 17234 | . . . . . . . . . 10 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran (𝑟‘𝑥) |
7 | fvssunirn 6953 | . . . . . . . . . . 11 ⊢ (𝑟‘𝑥) ⊆ ∪ ran 𝑟 | |
8 | rnss 5964 | . . . . . . . . . . 11 ⊢ ((𝑟‘𝑥) ⊆ ∪ ran 𝑟 → ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟) | |
9 | uniss 4939 | . . . . . . . . . . 11 ⊢ (ran (𝑟‘𝑥) ⊆ ran ∪ ran 𝑟 → ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟) | |
10 | 7, 8, 9 | mp2b 10 | . . . . . . . . . 10 ⊢ ∪ ran (𝑟‘𝑥) ⊆ ∪ ran ∪ ran 𝑟 |
11 | 6, 10 | sstri 4018 | . . . . . . . . 9 ⊢ (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 |
12 | rnss 5964 | . . . . . . . . 9 ⊢ ((Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran 𝑟 → ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟) | |
13 | uniss 4939 | . . . . . . . . 9 ⊢ (ran (Hom ‘(𝑟‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑟 → ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟) | |
14 | 11, 12, 13 | mp2b 10 | . . . . . . . 8 ⊢ ∪ ran (Hom ‘(𝑟‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
15 | 4, 14 | sstri 4018 | . . . . . . 7 ⊢ ((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
16 | 15 | rgenw 3071 | . . . . . 6 ⊢ ∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 |
17 | ss2ixp 8968 | . . . . . 6 ⊢ (∀𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑟 → X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟) | |
18 | 16, 17 | ax-mp 5 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 |
19 | vex 3492 | . . . . . . 7 ⊢ 𝑟 ∈ V | |
20 | 19 | dmex 7949 | . . . . . 6 ⊢ dom 𝑟 ∈ V |
21 | 19 | rnex 7950 | . . . . . . . . . . 11 ⊢ ran 𝑟 ∈ V |
22 | 21 | uniex 7776 | . . . . . . . . . 10 ⊢ ∪ ran 𝑟 ∈ V |
23 | 22 | rnex 7950 | . . . . . . . . 9 ⊢ ran ∪ ran 𝑟 ∈ V |
24 | 23 | uniex 7776 | . . . . . . . 8 ⊢ ∪ ran ∪ ran 𝑟 ∈ V |
25 | 24 | rnex 7950 | . . . . . . 7 ⊢ ran ∪ ran ∪ ran 𝑟 ∈ V |
26 | 25 | uniex 7776 | . . . . . 6 ⊢ ∪ ran ∪ ran ∪ ran 𝑟 ∈ V |
27 | 20, 26 | ixpconst 8965 | . . . . 5 ⊢ X𝑥 ∈ dom 𝑟∪ ran ∪ ran ∪ ran 𝑟 = (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
28 | 18, 27 | sseqtri 4045 | . . . 4 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
29 | 2, 28 | elpwi2 5353 | . . 3 ⊢ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
30 | 29 | rgen2w 3072 | . 2 ⊢ ∀𝑓 ∈ 𝑣 ∀𝑔 ∈ 𝑣 X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑟 ↑m dom 𝑟) |
31 | 1, 1, 3, 30 | mpoexw 8119 | 1 ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 ∀wral 3067 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 dom cdm 5700 ran crn 5701 ‘cfv 6573 (class class class)co 7448 ∈ cmpo 7450 ↑m cmap 8884 Xcixp 8955 ndxcnx 17240 Hom chom 17322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-map 8886 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-dec 12759 df-slot 17229 df-ndx 17241 df-hom 17335 |
This theorem is referenced by: prdsval 17515 |
Copyright terms: Public domain | W3C validator |