MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sszcld Structured version   Visualization version   GIF version

Theorem sszcld 23400
Description: Every subset of the integers are closed in the topology on . (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
sszcld (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽))

Proof of Theorem sszcld
StepHypRef Expression
1 recld2.1 . . 3 𝐽 = (TopOpen‘ℂfld)
21zcld2 23398 . 2 ℤ ∈ (Clsd‘𝐽)
3 id 22 . . 3 (𝐴 ⊆ ℤ → 𝐴 ⊆ ℤ)
4 zex 11968 . . . . 5 ℤ ∈ V
5 difss 4084 . . . . 5 (ℤ ∖ 𝐴) ⊆ ℤ
64, 5elpwi2 5222 . . . 4 (ℤ ∖ 𝐴) ∈ 𝒫 ℤ
71zdis 23399 . . . 4 (𝐽t ℤ) = 𝒫 ℤ
86, 7eleqtrri 2911 . . 3 (ℤ ∖ 𝐴) ∈ (𝐽t ℤ)
91cnfldtopon 23366 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
10 zsscn 11967 . . . . . 6 ℤ ⊆ ℂ
11 resttopon 21744 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ ℤ ⊆ ℂ) → (𝐽t ℤ) ∈ (TopOn‘ℤ))
129, 10, 11mp2an 691 . . . . 5 (𝐽t ℤ) ∈ (TopOn‘ℤ)
1312topontopi 21498 . . . 4 (𝐽t ℤ) ∈ Top
1412toponunii 21499 . . . . 5 ℤ = (𝐽t ℤ)
1514iscld 21610 . . . 4 ((𝐽t ℤ) ∈ Top → (𝐴 ∈ (Clsd‘(𝐽t ℤ)) ↔ (𝐴 ⊆ ℤ ∧ (ℤ ∖ 𝐴) ∈ (𝐽t ℤ))))
1613, 15ax-mp 5 . . 3 (𝐴 ∈ (Clsd‘(𝐽t ℤ)) ↔ (𝐴 ⊆ ℤ ∧ (ℤ ∖ 𝐴) ∈ (𝐽t ℤ)))
173, 8, 16sylanblrc 593 . 2 (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘(𝐽t ℤ)))
18 restcldr 21757 . 2 ((ℤ ∈ (Clsd‘𝐽) ∧ 𝐴 ∈ (Clsd‘(𝐽t ℤ))) → 𝐴 ∈ (Clsd‘𝐽))
192, 17, 18sylancr 590 1 (𝐴 ⊆ ℤ → 𝐴 ∈ (Clsd‘𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  Vcvv 3471  cdif 3907  wss 3910  𝒫 cpw 4512  cfv 6328  (class class class)co 7130  cc 10512  cz 11959  t crest 16672  TopOpenctopn 16673  fldccnfld 20520  Topctop 21476  TopOnctopon 21493  Clsdccld 21599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-rep 5163  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-1cn 10572  ax-icn 10573  ax-addcl 10574  ax-addrcl 10575  ax-mulcl 10576  ax-mulrcl 10577  ax-mulcom 10578  ax-addass 10579  ax-mulass 10580  ax-distr 10581  ax-i2m1 10582  ax-1ne0 10583  ax-1rid 10584  ax-rnegex 10585  ax-rrecex 10586  ax-cnre 10587  ax-pre-lttri 10588  ax-pre-lttrn 10589  ax-pre-ltadd 10590  ax-pre-mulgt0 10591  ax-pre-sup 10592
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-tp 4545  df-op 4547  df-uni 4812  df-int 4850  df-iun 4894  df-iin 4895  df-br 5040  df-opab 5102  df-mpt 5120  df-tr 5146  df-id 5433  df-eprel 5438  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6121  df-ord 6167  df-on 6168  df-lim 6169  df-suc 6170  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-om 7556  df-1st 7664  df-2nd 7665  df-wrecs 7922  df-recs 7983  df-rdg 8021  df-1o 8077  df-oadd 8081  df-er 8264  df-map 8383  df-en 8485  df-dom 8486  df-sdom 8487  df-fin 8488  df-fi 8851  df-sup 8882  df-inf 8883  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-sub 10849  df-neg 10850  df-div 11275  df-nn 11616  df-2 11678  df-3 11679  df-4 11680  df-5 11681  df-6 11682  df-7 11683  df-8 11684  df-9 11685  df-n0 11876  df-z 11960  df-dec 12077  df-uz 12222  df-q 12327  df-rp 12368  df-xneg 12485  df-xadd 12486  df-xmul 12487  df-ioo 12720  df-fz 12876  df-fl 13145  df-seq 13353  df-exp 13414  df-cj 14437  df-re 14438  df-im 14439  df-sqrt 14573  df-abs 14574  df-struct 16463  df-ndx 16464  df-slot 16465  df-base 16467  df-plusg 16556  df-mulr 16557  df-starv 16558  df-tset 16562  df-ple 16563  df-ds 16565  df-unif 16566  df-rest 16674  df-topn 16675  df-topgen 16695  df-psmet 20512  df-xmet 20513  df-met 20514  df-bl 20515  df-mopn 20516  df-cnfld 20521  df-top 21477  df-topon 21494  df-topsp 21516  df-bases 21529  df-cld 21602  df-xms 22905  df-ms 22906
This theorem is referenced by:  lgamucov  25601
  Copyright terms: Public domain W3C validator