MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpfval Structured version   Visualization version   GIF version

Theorem cnpfval 23149
Description: The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cnpfval ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
Distinct variable groups:   𝑤,𝑓,𝑥,𝐾   𝑓,𝑋,𝑤,𝑥   𝑓,𝑌,𝑤,𝑥   𝑣,𝑓,𝐽,𝑤,𝑥
Allowed substitution hints:   𝐾(𝑣)   𝑋(𝑣)   𝑌(𝑣)

Proof of Theorem cnpfval
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnp 23143 . . 3 CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
21a1i 11 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))})))
3 simprl 770 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
43unieqd 4869 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝐽)
5 toponuni 22829 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
65ad2antrr 726 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑋 = 𝐽)
74, 6eqtr4d 2769 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑗 = 𝑋)
8 simprr 772 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
98unieqd 4869 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝐾)
10 toponuni 22829 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
1110ad2antlr 727 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑌 = 𝐾)
129, 11eqtr4d 2769 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → 𝑘 = 𝑌)
1312, 7oveq12d 7364 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → ( 𝑘m 𝑗) = (𝑌m 𝑋))
143rexeqdv 3293 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤) ↔ ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)))
1514imbi2d 340 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)) ↔ ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))))
168, 15raleqbidv 3312 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤)) ↔ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))))
1713, 16rabeqbidv 3413 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} = {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))})
187, 17mpteq12dv 5176 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽𝑘 = 𝐾)) → (𝑥 𝑗 ↦ {𝑓 ∈ ( 𝑘m 𝑗) ∣ ∀𝑤𝑘 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝑗 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
19 topontop 22828 . . 3 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
2019adantr 480 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top)
21 topontop 22828 . . 3 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
2221adantl 481 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top)
23 ovex 7379 . . . . . 6 (𝑌m 𝑋) ∈ V
24 ssrab2 4027 . . . . . 6 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ⊆ (𝑌m 𝑋)
2523, 24elpwi2 5271 . . . . 5 {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌m 𝑋)
2625a1i 11 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥𝑋) → {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌m 𝑋))
2726fmpttd 7048 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌m 𝑋))
28 toponmax 22841 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2928adantr 480 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋𝐽)
3023pwex 5316 . . . 4 𝒫 (𝑌m 𝑋) ∈ V
3130a1i 11 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝒫 (𝑌m 𝑋) ∈ V)
32 fex2 7866 . . 3 (((𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌m 𝑋) ∧ 𝑋𝐽 ∧ 𝒫 (𝑌m 𝑋) ∈ V) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) ∈ V)
3327, 29, 31, 32syl3anc 1373 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}) ∈ V)
342, 18, 20, 22, 33ovmpod 7498 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥𝑋 ↦ {𝑓 ∈ (𝑌m 𝑋) ∣ ∀𝑤𝐾 ((𝑓𝑥) ∈ 𝑤 → ∃𝑣𝐽 (𝑥𝑣 ∧ (𝑓𝑣) ⊆ 𝑤))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856  cmpt 5170  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Topctop 22808  TopOnctopon 22825   CnP ccnp 23140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-top 22809  df-topon 22826  df-cnp 23143
This theorem is referenced by:  cnpval  23151  iscnp2  23154  cnambfre  37718
  Copyright terms: Public domain W3C validator