Step | Hyp | Ref
| Expression |
1 | | df-cnp 21451 |
. . 3
⊢ CnP =
(𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗
↦ {𝑓 ∈ (∪ 𝑘
↑𝑚 ∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
2 | 1 | a1i 11 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}))) |
3 | | simprl 761 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑗 = 𝐽) |
4 | 3 | unieqd 4683 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = ∪
𝐽) |
5 | | toponuni 21137 |
. . . . 5
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
6 | 5 | ad2antrr 716 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑋 = ∪ 𝐽) |
7 | 4, 6 | eqtr4d 2817 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑗 = 𝑋) |
8 | | simprr 763 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑘 = 𝐾) |
9 | 8 | unieqd 4683 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = ∪
𝐾) |
10 | | toponuni 21137 |
. . . . . . 7
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = ∪ 𝐾) |
11 | 10 | ad2antlr 717 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → 𝑌 = ∪ 𝐾) |
12 | 9, 11 | eqtr4d 2817 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → ∪ 𝑘 = 𝑌) |
13 | 12, 7 | oveq12d 6942 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∪
𝑘
↑𝑚 ∪ 𝑗) = (𝑌 ↑𝑚 𝑋)) |
14 | 3 | rexeqdv 3341 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤) ↔ ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))) |
15 | 14 | imbi2d 332 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) |
16 | 8, 15 | raleqbidv 3326 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)) ↔ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤)))) |
17 | 13, 16 | rabeqbidv 3392 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) |
18 | 7, 17 | mpteq12dv 4971 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝑗 = 𝐽 ∧ 𝑘 = 𝐾)) → (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑤 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝑗 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
19 | | topontop 21136 |
. . 3
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
20 | 19 | adantr 474 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐽 ∈ Top) |
21 | | topontop 21136 |
. . 3
⊢ (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top) |
22 | 21 | adantl 475 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝐾 ∈ Top) |
23 | | ovex 6956 |
. . . . . 6
⊢ (𝑌 ↑𝑚
𝑋) ∈
V |
24 | | ssrab2 3908 |
. . . . . 6
⊢ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ⊆ (𝑌 ↑𝑚 𝑋) |
25 | 23, 24 | elpwi2 5065 |
. . . . 5
⊢ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋) |
26 | 25 | a1i 11 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ 𝑥 ∈ 𝑋) → {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))} ∈ 𝒫 (𝑌 ↑𝑚 𝑋)) |
27 | 26 | fmpttd 6651 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋)) |
28 | | toponmax 21149 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
29 | 28 | adantr 474 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝑋 ∈ 𝐽) |
30 | 23 | pwex 5094 |
. . . 4
⊢ 𝒫
(𝑌
↑𝑚 𝑋) ∈ V |
31 | 30 | a1i 11 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) |
32 | | fex2 7402 |
. . 3
⊢ (((𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}):𝑋⟶𝒫 (𝑌 ↑𝑚 𝑋) ∧ 𝑋 ∈ 𝐽 ∧ 𝒫 (𝑌 ↑𝑚 𝑋) ∈ V) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) |
33 | 27, 29, 31, 32 | syl3anc 1439 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))}) ∈ V) |
34 | 2, 18, 20, 22, 33 | ovmpt2d 7067 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |