MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnmordi Structured version   Visualization version   GIF version

Theorem nnmordi 8450
Description: Ordering property of multiplication. Half of Proposition 8.19 of [TakeutiZaring] p. 63, limited to natural numbers. (Contributed by NM, 18-Sep-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnmordi (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))

Proof of Theorem nnmordi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elnn 7714 . . . . . 6 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
21expcom 414 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵𝐴 ∈ ω))
3 eleq2 2827 . . . . . . . . . . 11 (𝑥 = 𝐵 → (𝐴𝑥𝐴𝐵))
4 oveq2 7276 . . . . . . . . . . . 12 (𝑥 = 𝐵 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝐵))
54eleq2d 2824 . . . . . . . . . . 11 (𝑥 = 𝐵 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
63, 5imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝐵 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
76imbi2d 341 . . . . . . . . 9 (𝑥 = 𝐵 → ((((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))) ↔ (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
8 eleq2 2827 . . . . . . . . . . 11 (𝑥 = ∅ → (𝐴𝑥𝐴 ∈ ∅))
9 oveq2 7276 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝐶 ·o 𝑥) = (𝐶 ·o ∅))
109eleq2d 2824 . . . . . . . . . . 11 (𝑥 = ∅ → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
118, 10imbi12d 345 . . . . . . . . . 10 (𝑥 = ∅ → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))))
12 eleq2 2827 . . . . . . . . . . 11 (𝑥 = 𝑦 → (𝐴𝑥𝐴𝑦))
13 oveq2 7276 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o 𝑦))
1413eleq2d 2824 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))
1512, 14imbi12d 345 . . . . . . . . . 10 (𝑥 = 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))))
16 eleq2 2827 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → (𝐴𝑥𝐴 ∈ suc 𝑦))
17 oveq2 7276 . . . . . . . . . . . 12 (𝑥 = suc 𝑦 → (𝐶 ·o 𝑥) = (𝐶 ·o suc 𝑦))
1817eleq2d 2824 . . . . . . . . . . 11 (𝑥 = suc 𝑦 → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥) ↔ (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
1916, 18imbi12d 345 . . . . . . . . . 10 (𝑥 = suc 𝑦 → ((𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥)) ↔ (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))
20 noel 4265 . . . . . . . . . . . 12 ¬ 𝐴 ∈ ∅
2120pm2.21i 119 . . . . . . . . . . 11 (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅))
2221a1i 11 . . . . . . . . . 10 (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 ∈ ∅ → (𝐶 ·o 𝐴) ∈ (𝐶 ·o ∅)))
23 elsuci 6326 . . . . . . . . . . . . . . . 16 (𝐴 ∈ suc 𝑦 → (𝐴𝑦𝐴 = 𝑦))
24 nnmcl 8431 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o 𝑦) ∈ ω)
25 simpl 483 . . . . . . . . . . . . . . . . . 18 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → 𝐶 ∈ ω)
2624, 25jca 512 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω))
27 nnaword1 8448 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (𝐶 ·o 𝑦) ⊆ ((𝐶 ·o 𝑦) +o 𝐶))
2827sseld 3920 . . . . . . . . . . . . . . . . . . . . 21 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
2928imim2d 57 . . . . . . . . . . . . . . . . . . . 20 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶))))
3029imp 407 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3130adantrl 713 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
32 nna0 8423 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐶 ·o 𝑦) ∈ ω → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
3332ad2antrr 723 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) = (𝐶 ·o 𝑦))
34 nnaordi 8437 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐶 ∈ ω ∧ (𝐶 ·o 𝑦) ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3534ancoms 459 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
3635imp 407 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐶 ·o 𝑦) +o ∅) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
3733, 36eqeltrrd 2840 . . . . . . . . . . . . . . . . . . . 20 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶))
38 oveq2 7276 . . . . . . . . . . . . . . . . . . . . 21 (𝐴 = 𝑦 → (𝐶 ·o 𝐴) = (𝐶 ·o 𝑦))
3938eleq1d 2823 . . . . . . . . . . . . . . . . . . . 20 (𝐴 = 𝑦 → ((𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶) ↔ (𝐶 ·o 𝑦) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4037, 39syl5ibrcom 246 . . . . . . . . . . . . . . . . . . 19 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4140adantrr 714 . . . . . . . . . . . . . . . . . 18 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 = 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4231, 41jaod 856 . . . . . . . . . . . . . . . . 17 ((((𝐶 ·o 𝑦) ∈ ω ∧ 𝐶 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4326, 42sylan 580 . . . . . . . . . . . . . . . 16 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐴𝑦𝐴 = 𝑦) → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4423, 43syl5 34 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
45 nnmsuc 8426 . . . . . . . . . . . . . . . . 17 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → (𝐶 ·o suc 𝑦) = ((𝐶 ·o 𝑦) +o 𝐶))
4645eleq2d 2824 . . . . . . . . . . . . . . . 16 ((𝐶 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4746adantr 481 . . . . . . . . . . . . . . 15 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → ((𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦) ↔ (𝐶 ·o 𝐴) ∈ ((𝐶 ·o 𝑦) +o 𝐶)))
4844, 47sylibrd 258 . . . . . . . . . . . . . 14 (((𝐶 ∈ ω ∧ 𝑦 ∈ ω) ∧ (∅ ∈ 𝐶 ∧ (𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)))) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))
4948exp43 437 . . . . . . . . . . . . 13 (𝐶 ∈ ω → (𝑦 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5049com12 32 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5150adantld 491 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦))))))
5251impd 411 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → ((𝐴𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑦)) → (𝐴 ∈ suc 𝑦 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o suc 𝑦)))))
5311, 15, 19, 22, 52finds2 7738 . . . . . . . . 9 (𝑥 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝑥 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝑥))))
547, 53vtoclga 3511 . . . . . . . 8 (𝐵 ∈ ω → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5554com23 86 . . . . . . 7 (𝐵 ∈ ω → (𝐴𝐵 → (((𝐴 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))
5655exp4a 432 . . . . . 6 (𝐵 ∈ ω → (𝐴𝐵 → ((𝐴 ∈ ω ∧ 𝐶 ∈ ω) → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5756exp4a 432 . . . . 5 (𝐵 ∈ ω → (𝐴𝐵 → (𝐴 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵))))))
582, 57mpdd 43 . . . 4 (𝐵 ∈ ω → (𝐴𝐵 → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
5958com34 91 . . 3 (𝐵 ∈ ω → (𝐴𝐵 → (∅ ∈ 𝐶 → (𝐶 ∈ ω → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6059com24 95 . 2 (𝐵 ∈ ω → (𝐶 ∈ ω → (∅ ∈ 𝐶 → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))))
6160imp31 418 1 (((𝐵 ∈ ω ∧ 𝐶 ∈ ω) ∧ ∅ ∈ 𝐶) → (𝐴𝐵 → (𝐶 ·o 𝐴) ∈ (𝐶 ·o 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  c0 4257  suc csuc 6262  (class class class)co 7268  ωcom 7703   +o coa 8282   ·o comu 8283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pr 5351  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-oadd 8289  df-omul 8290
This theorem is referenced by:  nnmord  8451  mulclpi  10637
  Copyright terms: Public domain W3C validator