Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrmon Structured version   Visualization version   GIF version

Theorem constrmon 33616
Description: The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
constrmon.1 (𝜑𝑀𝑁)
Assertion
Ref Expression
constrmon (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥,𝑏,𝑐   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥,𝑓   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥,𝐶   𝑎,𝑏,𝑐,𝑒,𝑓,𝑡,𝑁   𝑁,𝑑,𝑠,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝑀,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐶(𝑟)   𝑀(𝑟,𝑑)   𝑁(𝑟)

Proof of Theorem constrmon
Dummy variables 𝑛 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 constrmon.1 . 2 (𝜑𝑀𝑁)
3 eleq2 2815 . . . 4 (𝑚 = ∅ → (𝑀𝑚𝑀 ∈ ∅))
4 fveq2 6893 . . . . 5 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
54sseq2d 4011 . . . 4 (𝑚 = ∅ → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶‘∅)))
63, 5imbi12d 343 . . 3 (𝑚 = ∅ → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀 ∈ ∅ → (𝐶𝑀) ⊆ (𝐶‘∅))))
7 eleq2w 2810 . . . 4 (𝑚 = 𝑛 → (𝑀𝑚𝑀𝑛))
8 fveq2 6893 . . . . 5 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
98sseq2d 4011 . . . 4 (𝑚 = 𝑛 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶𝑛)))
107, 9imbi12d 343 . . 3 (𝑚 = 𝑛 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))))
11 eleq2 2815 . . . 4 (𝑚 = suc 𝑛 → (𝑀𝑚𝑀 ∈ suc 𝑛))
12 fveq2 6893 . . . . 5 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1312sseq2d 4011 . . . 4 (𝑚 = suc 𝑛 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶‘suc 𝑛)))
1411, 13imbi12d 343 . . 3 (𝑚 = suc 𝑛 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀 ∈ suc 𝑛 → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))))
15 eleq2 2815 . . . 4 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
16 fveq2 6893 . . . . 5 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
1716sseq2d 4011 . . . 4 (𝑚 = 𝑁 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶𝑁)))
1815, 17imbi12d 343 . . 3 (𝑚 = 𝑁 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀𝑁 → (𝐶𝑀) ⊆ (𝐶𝑁))))
19 noel 4330 . . . 4 ¬ 𝑀 ∈ ∅
2019pm2.21i 119 . . 3 (𝑀 ∈ ∅ → (𝐶𝑀) ⊆ (𝐶‘∅))
21 simpllr 774 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)))
2221syldbl2 839 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑀) ⊆ (𝐶𝑛))
23 constr0.1 . . . . . . 7 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
24 simplll 773 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → 𝑛 ∈ On)
2523, 24constrss 33615 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑛) ⊆ (𝐶‘suc 𝑛))
2622, 25sstrd 3989 . . . . 5 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
27 simpr 483 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑀 = 𝑛)
2827fveq2d 6897 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑀) = (𝐶𝑛))
29 simplll 773 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑛 ∈ On)
3023, 29constrss 33615 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑛) ⊆ (𝐶‘suc 𝑛))
3128, 30eqsstrd 4017 . . . . 5 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
32 simpr 483 . . . . . 6 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → 𝑀 ∈ suc 𝑛)
33 elsuci 6435 . . . . . 6 (𝑀 ∈ suc 𝑛 → (𝑀𝑛𝑀 = 𝑛))
3432, 33syl 17 . . . . 5 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝑀𝑛𝑀 = 𝑛))
3526, 31, 34mpjaodan 956 . . . 4 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
3635exp31 418 . . 3 (𝑛 ∈ On → ((𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)) → (𝑀 ∈ suc 𝑛 → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))))
37 fveq2 6893 . . . . . . . 8 (𝑖 = 𝑀 → (𝐶𝑖) = (𝐶𝑀))
3837sseq2d 4011 . . . . . . 7 (𝑖 = 𝑀 → ((𝐶𝑀) ⊆ (𝐶𝑖) ↔ (𝐶𝑀) ⊆ (𝐶𝑀)))
39 simpr 483 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → 𝑀𝑚)
40 ssidd 4002 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ (𝐶𝑀))
4138, 39, 40rspcedvdw 3610 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → ∃𝑖𝑚 (𝐶𝑀) ⊆ (𝐶𝑖))
42 ssiun 5046 . . . . . 6 (∃𝑖𝑚 (𝐶𝑀) ⊆ (𝐶𝑖) → (𝐶𝑀) ⊆ 𝑖𝑚 (𝐶𝑖))
4341, 42syl 17 . . . . 5 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ 𝑖𝑚 (𝐶𝑖))
44 vex 3466 . . . . . . 7 𝑚 ∈ V
4544a1i 11 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → 𝑚 ∈ V)
46 simpll 765 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → Lim 𝑚)
4723, 45, 46constrlim 33611 . . . . 5 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑚) = 𝑖𝑚 (𝐶𝑖))
4843, 47sseqtrrd 4020 . . . 4 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ (𝐶𝑚))
4948exp31 418 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)) → (𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚))))
506, 10, 14, 18, 20, 36, 49tfinds 7862 . 2 (𝑁 ∈ On → (𝑀𝑁 → (𝐶𝑀) ⊆ (𝐶𝑁)))
511, 2, 50sylc 65 1 (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3o 1083  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  wss 3946  c0 4322  {cpr 4625   ciun 4993  cmpt 5228  Oncon0 6368  Lim wlim 6369  suc csuc 6370  cfv 6546  (class class class)co 7416  reccrdg 8431  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154  cmin 11485  ccj 15096  cim 15098  abscabs 15234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-pnf 11291  df-mnf 11292  df-ltxr 11294  df-sub 11487
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator