| Step | Hyp | Ref
| Expression |
| 1 | | constrsscn.1 |
. 2
⊢ (𝜑 → 𝑁 ∈ On) |
| 2 | | constrmon.1 |
. 2
⊢ (𝜑 → 𝑀 ∈ 𝑁) |
| 3 | | eleq2 2822 |
. . . 4
⊢ (𝑚 = ∅ → (𝑀 ∈ 𝑚 ↔ 𝑀 ∈ ∅)) |
| 4 | | fveq2 6887 |
. . . . 5
⊢ (𝑚 = ∅ → (𝐶‘𝑚) = (𝐶‘∅)) |
| 5 | 4 | sseq2d 3998 |
. . . 4
⊢ (𝑚 = ∅ → ((𝐶‘𝑀) ⊆ (𝐶‘𝑚) ↔ (𝐶‘𝑀) ⊆ (𝐶‘∅))) |
| 6 | 3, 5 | imbi12d 344 |
. . 3
⊢ (𝑚 = ∅ → ((𝑀 ∈ 𝑚 → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)) ↔ (𝑀 ∈ ∅ → (𝐶‘𝑀) ⊆ (𝐶‘∅)))) |
| 7 | | eleq2w 2817 |
. . . 4
⊢ (𝑚 = 𝑛 → (𝑀 ∈ 𝑚 ↔ 𝑀 ∈ 𝑛)) |
| 8 | | fveq2 6887 |
. . . . 5
⊢ (𝑚 = 𝑛 → (𝐶‘𝑚) = (𝐶‘𝑛)) |
| 9 | 8 | sseq2d 3998 |
. . . 4
⊢ (𝑚 = 𝑛 → ((𝐶‘𝑀) ⊆ (𝐶‘𝑚) ↔ (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) |
| 10 | 7, 9 | imbi12d 344 |
. . 3
⊢ (𝑚 = 𝑛 → ((𝑀 ∈ 𝑚 → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)) ↔ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛)))) |
| 11 | | eleq2 2822 |
. . . 4
⊢ (𝑚 = suc 𝑛 → (𝑀 ∈ 𝑚 ↔ 𝑀 ∈ suc 𝑛)) |
| 12 | | fveq2 6887 |
. . . . 5
⊢ (𝑚 = suc 𝑛 → (𝐶‘𝑚) = (𝐶‘suc 𝑛)) |
| 13 | 12 | sseq2d 3998 |
. . . 4
⊢ (𝑚 = suc 𝑛 → ((𝐶‘𝑀) ⊆ (𝐶‘𝑚) ↔ (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛))) |
| 14 | 11, 13 | imbi12d 344 |
. . 3
⊢ (𝑚 = suc 𝑛 → ((𝑀 ∈ 𝑚 → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)) ↔ (𝑀 ∈ suc 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛)))) |
| 15 | | eleq2 2822 |
. . . 4
⊢ (𝑚 = 𝑁 → (𝑀 ∈ 𝑚 ↔ 𝑀 ∈ 𝑁)) |
| 16 | | fveq2 6887 |
. . . . 5
⊢ (𝑚 = 𝑁 → (𝐶‘𝑚) = (𝐶‘𝑁)) |
| 17 | 16 | sseq2d 3998 |
. . . 4
⊢ (𝑚 = 𝑁 → ((𝐶‘𝑀) ⊆ (𝐶‘𝑚) ↔ (𝐶‘𝑀) ⊆ (𝐶‘𝑁))) |
| 18 | 15, 17 | imbi12d 344 |
. . 3
⊢ (𝑚 = 𝑁 → ((𝑀 ∈ 𝑚 → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)) ↔ (𝑀 ∈ 𝑁 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁)))) |
| 19 | | noel 4320 |
. . . 4
⊢ ¬
𝑀 ∈
∅ |
| 20 | 19 | pm2.21i 119 |
. . 3
⊢ (𝑀 ∈ ∅ → (𝐶‘𝑀) ⊆ (𝐶‘∅)) |
| 21 | | simpllr 775 |
. . . . . . 7
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 ∈ 𝑛) → (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) |
| 22 | 21 | syldbl2 841 |
. . . . . 6
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 ∈ 𝑛) → (𝐶‘𝑀) ⊆ (𝐶‘𝑛)) |
| 23 | | constr0.1 |
. . . . . . 7
⊢ 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑 − 𝑐))) ∧
(ℑ‘((∗‘(𝑏 − 𝑎)) · (𝑑 − 𝑐))) ≠ 0) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 ∃𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏 − 𝑎))) ∧ (abs‘(𝑥 − 𝑐)) = (abs‘(𝑒 − 𝑓))) ∨ ∃𝑎 ∈ 𝑠 ∃𝑏 ∈ 𝑠 ∃𝑐 ∈ 𝑠 ∃𝑑 ∈ 𝑠 ∃𝑒 ∈ 𝑠 ∃𝑓 ∈ 𝑠 (𝑎 ≠ 𝑑 ∧ (abs‘(𝑥 − 𝑎)) = (abs‘(𝑏 − 𝑐)) ∧ (abs‘(𝑥 − 𝑑)) = (abs‘(𝑒 − 𝑓))))}), {0, 1}) |
| 24 | | simplll 774 |
. . . . . . 7
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 ∈ 𝑛) → 𝑛 ∈ On) |
| 25 | 23, 24 | constrss 33725 |
. . . . . 6
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 ∈ 𝑛) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
| 26 | 22, 25 | sstrd 3976 |
. . . . 5
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 ∈ 𝑛) → (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛)) |
| 27 | | simpr 484 |
. . . . . . 7
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑀 = 𝑛) |
| 28 | 27 | fveq2d 6891 |
. . . . . 6
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶‘𝑀) = (𝐶‘𝑛)) |
| 29 | | simplll 774 |
. . . . . . 7
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑛 ∈ On) |
| 30 | 23, 29 | constrss 33725 |
. . . . . 6
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶‘𝑛) ⊆ (𝐶‘suc 𝑛)) |
| 31 | 28, 30 | eqsstrd 4000 |
. . . . 5
⊢ ((((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛)) |
| 32 | | simpr 484 |
. . . . . 6
⊢ (((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) → 𝑀 ∈ suc 𝑛) |
| 33 | | elsuci 6432 |
. . . . . 6
⊢ (𝑀 ∈ suc 𝑛 → (𝑀 ∈ 𝑛 ∨ 𝑀 = 𝑛)) |
| 34 | 32, 33 | syl 17 |
. . . . 5
⊢ (((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝑀 ∈ 𝑛 ∨ 𝑀 = 𝑛)) |
| 35 | 26, 31, 34 | mpjaodan 960 |
. . . 4
⊢ (((𝑛 ∈ On ∧ (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛)) |
| 36 | 35 | exp31 419 |
. . 3
⊢ (𝑛 ∈ On → ((𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛)) → (𝑀 ∈ suc 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘suc 𝑛)))) |
| 37 | | fveq2 6887 |
. . . . . . . 8
⊢ (𝑖 = 𝑀 → (𝐶‘𝑖) = (𝐶‘𝑀)) |
| 38 | 37 | sseq2d 3998 |
. . . . . . 7
⊢ (𝑖 = 𝑀 → ((𝐶‘𝑀) ⊆ (𝐶‘𝑖) ↔ (𝐶‘𝑀) ⊆ (𝐶‘𝑀))) |
| 39 | | simpr 484 |
. . . . . . 7
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → 𝑀 ∈ 𝑚) |
| 40 | | ssidd 3989 |
. . . . . . 7
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → (𝐶‘𝑀) ⊆ (𝐶‘𝑀)) |
| 41 | 38, 39, 40 | rspcedvdw 3609 |
. . . . . 6
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → ∃𝑖 ∈ 𝑚 (𝐶‘𝑀) ⊆ (𝐶‘𝑖)) |
| 42 | | ssiun 5028 |
. . . . . 6
⊢
(∃𝑖 ∈
𝑚 (𝐶‘𝑀) ⊆ (𝐶‘𝑖) → (𝐶‘𝑀) ⊆ ∪ 𝑖 ∈ 𝑚 (𝐶‘𝑖)) |
| 43 | 41, 42 | syl 17 |
. . . . 5
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → (𝐶‘𝑀) ⊆ ∪ 𝑖 ∈ 𝑚 (𝐶‘𝑖)) |
| 44 | | vex 3468 |
. . . . . . 7
⊢ 𝑚 ∈ V |
| 45 | 44 | a1i 11 |
. . . . . 6
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → 𝑚 ∈ V) |
| 46 | | simpll 766 |
. . . . . 6
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → Lim 𝑚) |
| 47 | 23, 45, 46 | constrlim 33721 |
. . . . 5
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → (𝐶‘𝑚) = ∪ 𝑖 ∈ 𝑚 (𝐶‘𝑖)) |
| 48 | 43, 47 | sseqtrrd 4003 |
. . . 4
⊢ (((Lim
𝑚 ∧ ∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛))) ∧ 𝑀 ∈ 𝑚) → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)) |
| 49 | 48 | exp31 419 |
. . 3
⊢ (Lim
𝑚 → (∀𝑛 ∈ 𝑚 (𝑀 ∈ 𝑛 → (𝐶‘𝑀) ⊆ (𝐶‘𝑛)) → (𝑀 ∈ 𝑚 → (𝐶‘𝑀) ⊆ (𝐶‘𝑚)))) |
| 50 | 6, 10, 14, 18, 20, 36, 49 | tfinds 7864 |
. 2
⊢ (𝑁 ∈ On → (𝑀 ∈ 𝑁 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁))) |
| 51 | 1, 2, 50 | sylc 65 |
1
⊢ (𝜑 → (𝐶‘𝑀) ⊆ (𝐶‘𝑁)) |