Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  constrmon Structured version   Visualization version   GIF version

Theorem constrmon 33734
Description: The construction of constructible numbers is monotonous, i.e. if the ordinal 𝑀 is less than the ordinal 𝑁, which is denoted by 𝑀𝑁, then the 𝑀-th step of the constructible numbers is included in the 𝑁-th step. (Contributed by Thierry Arnoux, 1-Jul-2025.)
Hypotheses
Ref Expression
constr0.1 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
constrsscn.1 (𝜑𝑁 ∈ On)
constrmon.1 (𝜑𝑀𝑁)
Assertion
Ref Expression
constrmon (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
Distinct variable groups:   𝐶,𝑎,𝑠,𝑥,𝑏,𝑐   𝐶,𝑑,𝑠,𝑥   𝐶,𝑒,𝑠,𝑥,𝑓   𝑠,𝑟,𝑥   𝑡,𝑠,𝑥,𝐶   𝑎,𝑏,𝑐,𝑒,𝑓,𝑡,𝑁   𝑁,𝑑,𝑠,𝑥   𝜑,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥   𝑀,𝑎,𝑏,𝑐,𝑒,𝑓,𝑠,𝑡,𝑥
Allowed substitution hints:   𝜑(𝑟,𝑑)   𝐶(𝑟)   𝑀(𝑟,𝑑)   𝑁(𝑟)

Proof of Theorem constrmon
Dummy variables 𝑛 𝑚 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 constrsscn.1 . 2 (𝜑𝑁 ∈ On)
2 constrmon.1 . 2 (𝜑𝑀𝑁)
3 eleq2 2833 . . . 4 (𝑚 = ∅ → (𝑀𝑚𝑀 ∈ ∅))
4 fveq2 6920 . . . . 5 (𝑚 = ∅ → (𝐶𝑚) = (𝐶‘∅))
54sseq2d 4041 . . . 4 (𝑚 = ∅ → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶‘∅)))
63, 5imbi12d 344 . . 3 (𝑚 = ∅ → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀 ∈ ∅ → (𝐶𝑀) ⊆ (𝐶‘∅))))
7 eleq2w 2828 . . . 4 (𝑚 = 𝑛 → (𝑀𝑚𝑀𝑛))
8 fveq2 6920 . . . . 5 (𝑚 = 𝑛 → (𝐶𝑚) = (𝐶𝑛))
98sseq2d 4041 . . . 4 (𝑚 = 𝑛 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶𝑛)))
107, 9imbi12d 344 . . 3 (𝑚 = 𝑛 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))))
11 eleq2 2833 . . . 4 (𝑚 = suc 𝑛 → (𝑀𝑚𝑀 ∈ suc 𝑛))
12 fveq2 6920 . . . . 5 (𝑚 = suc 𝑛 → (𝐶𝑚) = (𝐶‘suc 𝑛))
1312sseq2d 4041 . . . 4 (𝑚 = suc 𝑛 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶‘suc 𝑛)))
1411, 13imbi12d 344 . . 3 (𝑚 = suc 𝑛 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀 ∈ suc 𝑛 → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))))
15 eleq2 2833 . . . 4 (𝑚 = 𝑁 → (𝑀𝑚𝑀𝑁))
16 fveq2 6920 . . . . 5 (𝑚 = 𝑁 → (𝐶𝑚) = (𝐶𝑁))
1716sseq2d 4041 . . . 4 (𝑚 = 𝑁 → ((𝐶𝑀) ⊆ (𝐶𝑚) ↔ (𝐶𝑀) ⊆ (𝐶𝑁)))
1815, 17imbi12d 344 . . 3 (𝑚 = 𝑁 → ((𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚)) ↔ (𝑀𝑁 → (𝐶𝑀) ⊆ (𝐶𝑁))))
19 noel 4360 . . . 4 ¬ 𝑀 ∈ ∅
2019pm2.21i 119 . . 3 (𝑀 ∈ ∅ → (𝐶𝑀) ⊆ (𝐶‘∅))
21 simpllr 775 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)))
2221syldbl2 840 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑀) ⊆ (𝐶𝑛))
23 constr0.1 . . . . . . 7 𝐶 = rec((𝑠 ∈ V ↦ {𝑥 ∈ ℂ ∣ (∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑡 ∈ ℝ ∃𝑟 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ 𝑥 = (𝑐 + (𝑟 · (𝑑𝑐))) ∧ (ℑ‘((∗‘(𝑏𝑎)) · (𝑑𝑐))) ≠ 0) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑒𝑠𝑓𝑠𝑡 ∈ ℝ (𝑥 = (𝑎 + (𝑡 · (𝑏𝑎))) ∧ (abs‘(𝑥𝑐)) = (abs‘(𝑒𝑓))) ∨ ∃𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑠𝑒𝑠𝑓𝑠 (𝑎𝑑 ∧ (abs‘(𝑥𝑎)) = (abs‘(𝑏𝑐)) ∧ (abs‘(𝑥𝑑)) = (abs‘(𝑒𝑓))))}), {0, 1})
24 simplll 774 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → 𝑛 ∈ On)
2523, 24constrss 33733 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑛) ⊆ (𝐶‘suc 𝑛))
2622, 25sstrd 4019 . . . . 5 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
27 simpr 484 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑀 = 𝑛)
2827fveq2d 6924 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑀) = (𝐶𝑛))
29 simplll 774 . . . . . . 7 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → 𝑛 ∈ On)
3023, 29constrss 33733 . . . . . 6 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑛) ⊆ (𝐶‘suc 𝑛))
3128, 30eqsstrd 4047 . . . . 5 ((((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) ∧ 𝑀 = 𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
32 simpr 484 . . . . . 6 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → 𝑀 ∈ suc 𝑛)
33 elsuci 6462 . . . . . 6 (𝑀 ∈ suc 𝑛 → (𝑀𝑛𝑀 = 𝑛))
3432, 33syl 17 . . . . 5 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝑀𝑛𝑀 = 𝑛))
3526, 31, 34mpjaodan 959 . . . 4 (((𝑛 ∈ On ∧ (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀 ∈ suc 𝑛) → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))
3635exp31 419 . . 3 (𝑛 ∈ On → ((𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)) → (𝑀 ∈ suc 𝑛 → (𝐶𝑀) ⊆ (𝐶‘suc 𝑛))))
37 fveq2 6920 . . . . . . . 8 (𝑖 = 𝑀 → (𝐶𝑖) = (𝐶𝑀))
3837sseq2d 4041 . . . . . . 7 (𝑖 = 𝑀 → ((𝐶𝑀) ⊆ (𝐶𝑖) ↔ (𝐶𝑀) ⊆ (𝐶𝑀)))
39 simpr 484 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → 𝑀𝑚)
40 ssidd 4032 . . . . . . 7 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ (𝐶𝑀))
4138, 39, 40rspcedvdw 3638 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → ∃𝑖𝑚 (𝐶𝑀) ⊆ (𝐶𝑖))
42 ssiun 5069 . . . . . 6 (∃𝑖𝑚 (𝐶𝑀) ⊆ (𝐶𝑖) → (𝐶𝑀) ⊆ 𝑖𝑚 (𝐶𝑖))
4341, 42syl 17 . . . . 5 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ 𝑖𝑚 (𝐶𝑖))
44 vex 3492 . . . . . . 7 𝑚 ∈ V
4544a1i 11 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → 𝑚 ∈ V)
46 simpll 766 . . . . . 6 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → Lim 𝑚)
4723, 45, 46constrlim 33729 . . . . 5 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑚) = 𝑖𝑚 (𝐶𝑖))
4843, 47sseqtrrd 4050 . . . 4 (((Lim 𝑚 ∧ ∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛))) ∧ 𝑀𝑚) → (𝐶𝑀) ⊆ (𝐶𝑚))
4948exp31 419 . . 3 (Lim 𝑚 → (∀𝑛𝑚 (𝑀𝑛 → (𝐶𝑀) ⊆ (𝐶𝑛)) → (𝑀𝑚 → (𝐶𝑀) ⊆ (𝐶𝑚))))
506, 10, 14, 18, 20, 36, 49tfinds 7897 . 2 (𝑁 ∈ On → (𝑀𝑁 → (𝐶𝑀) ⊆ (𝐶𝑁)))
511, 2, 50sylc 65 1 (𝜑 → (𝐶𝑀) ⊆ (𝐶𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846  w3o 1086  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  wss 3976  c0 4352  {cpr 4650   ciun 5015  cmpt 5249  Oncon0 6395  Lim wlim 6396  suc csuc 6397  cfv 6573  (class class class)co 7448  reccrdg 8465  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cmin 11520  ccj 15145  cim 15147  abscabs 15283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-sub 11522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator