![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cofveqaeq | Structured version Visualization version GIF version |
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
Ref | Expression |
---|---|
f1cofveqaeq | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹:𝐵–1-1→𝐶) | |
2 | f1f 6805 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
3 | ffvelcdm 7101 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ 𝐵) | |
4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ 𝐵)) |
5 | ffvelcdm 7101 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → (𝐺‘𝑌) ∈ 𝐵) | |
6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑌 ∈ 𝐴 → (𝐺‘𝑌) ∈ 𝐵)) |
7 | 4, 6 | anim12d 609 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
10 | 9 | imp 406 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) |
11 | f1veqaeq 7277 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) | |
12 | 1, 10, 11 | syl2an2r 685 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) |
13 | f1veqaeq 7277 | . . 3 ⊢ ((𝐺:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) | |
14 | 13 | adantll 714 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
15 | 12, 14 | syld 47 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⟶wf 6559 –1-1→wf1 6560 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fv 6571 |
This theorem is referenced by: uspgrn2crct 29838 |
Copyright terms: Public domain | W3C validator |