MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   GIF version

Theorem f1cofveqaeq 7131
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 483 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐹:𝐵1-1𝐶)
2 f1f 6670 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 ffvelrn 6959 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → (𝐺𝑋) ∈ 𝐵)
43ex 413 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑋𝐴 → (𝐺𝑋) ∈ 𝐵))
5 ffvelrn 6959 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → (𝐺𝑌) ∈ 𝐵)
65ex 413 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑌𝐴 → (𝐺𝑌) ∈ 𝐵))
74, 6anim12d 609 . . . . . 6 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
82, 7syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
98adantl 482 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
109imp 407 . . 3 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵))
11 f1veqaeq 7130 . . 3 ((𝐹:𝐵1-1𝐶 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
121, 10, 11syl2an2r 682 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
13 f1veqaeq 7130 . . 3 ((𝐺:𝐴1-1𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1413adantll 711 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1512, 14syld 47 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wf 6429  1-1wf1 6430  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by:  uspgrn2crct  28173
  Copyright terms: Public domain W3C validator