MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   GIF version

Theorem f1cofveqaeq 7027
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 486 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐹:𝐵1-1𝐶)
2 f1f 6574 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 ffvelrn 6859 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → (𝐺𝑋) ∈ 𝐵)
43ex 416 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑋𝐴 → (𝐺𝑋) ∈ 𝐵))
5 ffvelrn 6859 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → (𝐺𝑌) ∈ 𝐵)
65ex 416 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑌𝐴 → (𝐺𝑌) ∈ 𝐵))
74, 6anim12d 612 . . . . . 6 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
82, 7syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
98adantl 485 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
109imp 410 . . 3 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵))
11 f1veqaeq 7026 . . 3 ((𝐹:𝐵1-1𝐶 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
121, 10, 11syl2an2r 685 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
13 f1veqaeq 7026 . . 3 ((𝐺:𝐴1-1𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1413adantll 714 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1512, 14syld 47 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  wf 6335  1-1wf1 6336  cfv 6339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-sep 5167  ax-nul 5174  ax-pr 5296
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-v 3400  df-sbc 3681  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-nul 4212  df-if 4415  df-sn 4517  df-pr 4519  df-op 4523  df-uni 4797  df-br 5031  df-opab 5093  df-id 5429  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fv 6347
This theorem is referenced by:  uspgrn2crct  27746
  Copyright terms: Public domain W3C validator