![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cofveqaeq | Structured version Visualization version GIF version |
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
Ref | Expression |
---|---|
f1cofveqaeq | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹:𝐵–1-1→𝐶) | |
2 | f1f 6739 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
3 | ffvelcdm 7033 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ 𝐵) | |
4 | 3 | ex 414 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ 𝐵)) |
5 | ffvelcdm 7033 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → (𝐺‘𝑌) ∈ 𝐵) | |
6 | 5 | ex 414 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑌 ∈ 𝐴 → (𝐺‘𝑌) ∈ 𝐵)) |
7 | 4, 6 | anim12d 610 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
9 | 8 | adantl 483 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
10 | 9 | imp 408 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) |
11 | f1veqaeq 7205 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) | |
12 | 1, 10, 11 | syl2an2r 684 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) |
13 | f1veqaeq 7205 | . . 3 ⊢ ((𝐺:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) | |
14 | 13 | adantll 713 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
15 | 12, 14 | syld 47 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ⟶wf 6493 –1-1→wf1 6494 ‘cfv 6497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fv 6505 |
This theorem is referenced by: uspgrn2crct 28795 |
Copyright terms: Public domain | W3C validator |