![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cofveqaeq | Structured version Visualization version GIF version |
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
Ref | Expression |
---|---|
f1cofveqaeq | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹:𝐵–1-1→𝐶) | |
2 | f1f 6787 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
3 | ffvelcdm 7085 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ 𝐵) | |
4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ 𝐵)) |
5 | ffvelcdm 7085 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → (𝐺‘𝑌) ∈ 𝐵) | |
6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑌 ∈ 𝐴 → (𝐺‘𝑌) ∈ 𝐵)) |
7 | 4, 6 | anim12d 608 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
10 | 9 | imp 406 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) |
11 | f1veqaeq 7261 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) | |
12 | 1, 10, 11 | syl2an2r 684 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) |
13 | f1veqaeq 7261 | . . 3 ⊢ ((𝐺:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) | |
14 | 13 | adantll 713 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
15 | 12, 14 | syld 47 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⟶wf 6538 –1-1→wf1 6539 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fv 6550 |
This theorem is referenced by: uspgrn2crct 29593 |
Copyright terms: Public domain | W3C validator |