| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cofveqaeq | Structured version Visualization version GIF version | ||
| Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
| Ref | Expression |
|---|---|
| f1cofveqaeq | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹:𝐵–1-1→𝐶) | |
| 2 | f1f 6785 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 3 | ffvelcdm 7082 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ 𝐵) | |
| 4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ 𝐵)) |
| 5 | ffvelcdm 7082 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → (𝐺‘𝑌) ∈ 𝐵) | |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑌 ∈ 𝐴 → (𝐺‘𝑌) ∈ 𝐵)) |
| 7 | 4, 6 | anim12d 609 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) |
| 11 | f1veqaeq 7260 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) | |
| 12 | 1, 10, 11 | syl2an2r 685 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) |
| 13 | f1veqaeq 7260 | . . 3 ⊢ ((𝐺:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) | |
| 14 | 13 | adantll 714 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
| 15 | 12, 14 | syld 47 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⟶wf 6538 –1-1→wf1 6539 ‘cfv 6542 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fv 6550 |
| This theorem is referenced by: uspgrn2crct 29775 |
| Copyright terms: Public domain | W3C validator |