| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cofveqaeq | Structured version Visualization version GIF version | ||
| Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.) |
| Ref | Expression |
|---|---|
| f1cofveqaeq | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → 𝐹:𝐵–1-1→𝐶) | |
| 2 | f1f 6727 | . . . . . 6 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 3 | ffvelcdm 7023 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐺‘𝑋) ∈ 𝐵) | |
| 4 | 3 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑋 ∈ 𝐴 → (𝐺‘𝑋) ∈ 𝐵)) |
| 5 | ffvelcdm 7023 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → (𝐺‘𝑌) ∈ 𝐵) | |
| 6 | 5 | ex 412 | . . . . . . 7 ⊢ (𝐺:𝐴⟶𝐵 → (𝑌 ∈ 𝐴 → (𝐺‘𝑌) ∈ 𝐵)) |
| 7 | 4, 6 | anim12d 609 | . . . . . 6 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 8 | 2, 7 | syl 17 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵))) |
| 10 | 9 | imp 406 | . . 3 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) |
| 11 | f1veqaeq 7199 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ ((𝐺‘𝑋) ∈ 𝐵 ∧ (𝐺‘𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) | |
| 12 | 1, 10, 11 | syl2an2r 685 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → (𝐺‘𝑋) = (𝐺‘𝑌))) |
| 13 | f1veqaeq 7199 | . . 3 ⊢ ((𝐺:𝐴–1-1→𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) | |
| 14 | 13 | adantll 714 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐺‘𝑋) = (𝐺‘𝑌) → 𝑋 = 𝑌)) |
| 15 | 12, 14 | syld 47 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⟶wf 6485 –1-1→wf1 6486 ‘cfv 6489 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fv 6497 |
| This theorem is referenced by: uspgrn2crct 29797 upgrimtrlslem2 48019 |
| Copyright terms: Public domain | W3C validator |