MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   GIF version

Theorem f1cofveqaeq 7262
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐹:𝐵1-1𝐶)
2 f1f 6787 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 ffvelcdm 7085 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → (𝐺𝑋) ∈ 𝐵)
43ex 412 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑋𝐴 → (𝐺𝑋) ∈ 𝐵))
5 ffvelcdm 7085 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → (𝐺𝑌) ∈ 𝐵)
65ex 412 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑌𝐴 → (𝐺𝑌) ∈ 𝐵))
74, 6anim12d 608 . . . . . 6 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
82, 7syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
98adantl 481 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
109imp 406 . . 3 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵))
11 f1veqaeq 7261 . . 3 ((𝐹:𝐵1-1𝐶 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
121, 10, 11syl2an2r 684 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
13 f1veqaeq 7261 . . 3 ((𝐺:𝐴1-1𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1413adantll 713 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1512, 14syld 47 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wf 6538  1-1wf1 6539  cfv 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fv 6550
This theorem is referenced by:  uspgrn2crct  29593
  Copyright terms: Public domain W3C validator