MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   GIF version

Theorem f1cofveqaeq 7232
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 482 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐹:𝐵1-1𝐶)
2 f1f 6756 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 ffvelcdm 7053 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → (𝐺𝑋) ∈ 𝐵)
43ex 412 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑋𝐴 → (𝐺𝑋) ∈ 𝐵))
5 ffvelcdm 7053 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → (𝐺𝑌) ∈ 𝐵)
65ex 412 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑌𝐴 → (𝐺𝑌) ∈ 𝐵))
74, 6anim12d 609 . . . . . 6 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
82, 7syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
98adantl 481 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
109imp 406 . . 3 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵))
11 f1veqaeq 7231 . . 3 ((𝐹:𝐵1-1𝐶 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
121, 10, 11syl2an2r 685 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
13 f1veqaeq 7231 . . 3 ((𝐺:𝐴1-1𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1413adantll 714 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1512, 14syld 47 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wf 6507  1-1wf1 6508  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fv 6519
This theorem is referenced by:  uspgrn2crct  29738  upgrimtrlslem2  47905
  Copyright terms: Public domain W3C validator