MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeq Structured version   Visualization version   GIF version

Theorem f1cofveqaeq 7007
Description: If the values of a composition of one-to-one functions for two arguments are equal, the arguments themselves must be equal. (Contributed by AV, 3-Feb-2021.)
Assertion
Ref Expression
f1cofveqaeq (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeq
StepHypRef Expression
1 simpl 483 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → 𝐹:𝐵1-1𝐶)
2 f1f 6568 . . . . . 6 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
3 ffvelrn 6841 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → (𝐺𝑋) ∈ 𝐵)
43ex 413 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑋𝐴 → (𝐺𝑋) ∈ 𝐵))
5 ffvelrn 6841 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → (𝐺𝑌) ∈ 𝐵)
65ex 413 . . . . . . 7 (𝐺:𝐴𝐵 → (𝑌𝐴 → (𝐺𝑌) ∈ 𝐵))
74, 6anim12d 608 . . . . . 6 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
82, 7syl 17 . . . . 5 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
98adantl 482 . . . 4 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)))
109imp 407 . . 3 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵))
11 f1veqaeq 7006 . . 3 ((𝐹:𝐵1-1𝐶 ∧ ((𝐺𝑋) ∈ 𝐵 ∧ (𝐺𝑌) ∈ 𝐵)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
121, 10, 11syl2an2r 681 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → (𝐺𝑋) = (𝐺𝑌)))
13 f1veqaeq 7006 . . 3 ((𝐺:𝐴1-1𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1413adantll 710 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐺𝑋) = (𝐺𝑌) → 𝑋 = 𝑌))
1512, 14syld 47 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wf 6344  1-1wf1 6345  cfv 6348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-sbc 3770  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fv 6356
This theorem is referenced by:  uspgrn2crct  27513
  Copyright terms: Public domain W3C validator