MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1veqaeq Structured version   Visualization version   GIF version

Theorem f1veqaeq 7190
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1veqaeq
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7188 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)))
2 fveqeq2 6831 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝑑)))
3 eqeq1 2735 . . . . . 6 (𝑐 = 𝐶 → (𝑐 = 𝑑𝐶 = 𝑑))
42, 3imbi12d 344 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑)))
5 fveq2 6822 . . . . . . 7 (𝑑 = 𝐷 → (𝐹𝑑) = (𝐹𝐷))
65eqeq2d 2742 . . . . . 6 (𝑑 = 𝐷 → ((𝐹𝐶) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝐷)))
7 eqeq2 2743 . . . . . 6 (𝑑 = 𝐷 → (𝐶 = 𝑑𝐶 = 𝐷))
86, 7imbi12d 344 . . . . 5 (𝑑 = 𝐷 → (((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
94, 8rspc2v 3583 . . . 4 ((𝐶𝐴𝐷𝐴) → (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
109com12 32 . . 3 (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
111, 10simplbiim 504 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1211imp 406 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wf 6477  1-1wf1 6478  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fv 6489
This theorem is referenced by:  f1cofveqaeq  7191  f1cofveqaeqALT  7192  dff14i  7193  f1fveq  7196  f1cdmsn  7216  f1prex  7218  f1ocnvfvrneq  7220  fvf1pr  7241  f1o2ndf1  8052  fvf1tp  13693  f1ghm0to0  19157  symgfvne  19293  mat2pmatf1  22644  f1otrg  28849  uspgr2wlkeq  29624  pthdivtx  29705  spthdep  29712  spthonepeq  29730  usgr2trlncl  29738  ccatf1  32930  swrdf1  32937  cycpmrn  33112  f1resveqaeq  35097  vonf1owev  35152  poimirlem1  37660  poimirlem9  37668  poimirlem22  37681  mblfinlem2  37697  ricdrng1  42620  permaxext  45097  isuspgrim0lem  47992  isubgr3stgrlem7  48071
  Copyright terms: Public domain W3C validator