| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1veqaeq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| f1veqaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 7211 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑))) | |
| 2 | fveqeq2 6849 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝑑))) | |
| 3 | eqeq1 2733 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐 = 𝑑 ↔ 𝐶 = 𝑑)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑐 = 𝐶 → (((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑))) |
| 5 | fveq2 6840 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝐹‘𝑑) = (𝐹‘𝐷)) | |
| 6 | 5 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((𝐹‘𝐶) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 7 | eqeq2 2741 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝐶 = 𝑑 ↔ 𝐶 = 𝐷)) | |
| 8 | 6, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 9 | 4, 8 | rspc2v 3596 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 10 | 9 | com12 32 | . . 3 ⊢ (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6495 –1-1→wf1 6496 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fv 6507 |
| This theorem is referenced by: f1cofveqaeq 7214 f1cofveqaeqALT 7215 dff14i 7216 f1fveq 7219 f1cdmsn 7239 f1prex 7241 f1ocnvfvrneq 7243 fvf1pr 7264 f1o2ndf1 8078 fvf1tp 13727 f1ghm0to0 19159 symgfvne 19295 mat2pmatf1 22649 f1otrg 28851 uspgr2wlkeq 29626 pthdivtx 29707 spthdep 29714 spthonepeq 29732 usgr2trlncl 29740 ccatf1 32920 swrdf1 32928 cycpmrn 33115 f1resveqaeq 35068 vonf1owev 35088 poimirlem1 37608 poimirlem9 37616 poimirlem22 37629 mblfinlem2 37645 ricdrng1 42509 permaxext 44988 isuspgrim0lem 47886 isubgr3stgrlem7 47964 |
| Copyright terms: Public domain | W3C validator |