MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1veqaeq Structured version   Visualization version   GIF version

Theorem f1veqaeq 6993
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1veqaeq
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 6991 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)))
2 fveqeq2 6654 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝑑)))
3 eqeq1 2802 . . . . . 6 (𝑐 = 𝐶 → (𝑐 = 𝑑𝐶 = 𝑑))
42, 3imbi12d 348 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑)))
5 fveq2 6645 . . . . . . 7 (𝑑 = 𝐷 → (𝐹𝑑) = (𝐹𝐷))
65eqeq2d 2809 . . . . . 6 (𝑑 = 𝐷 → ((𝐹𝐶) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝐷)))
7 eqeq2 2810 . . . . . 6 (𝑑 = 𝐷 → (𝐶 = 𝑑𝐶 = 𝐷))
86, 7imbi12d 348 . . . . 5 (𝑑 = 𝐷 → (((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
94, 8rspc2v 3581 . . . 4 ((𝐶𝐴𝐷𝐴) → (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
109com12 32 . . 3 (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
111, 10simplbiim 508 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1211imp 410 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wral 3106  wf 6320  1-1wf1 6321  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fv 6332
This theorem is referenced by:  f1cofveqaeq  6994  f1cofveqaeqALT  6995  2f1fvneq  6996  f1fveq  6998  f1prex  7018  f1ocnvfvrneq  7020  f1o2ndf1  7801  symgfvne  18501  f1ghm0to0  19488  mat2pmatf1  21334  f1otrg  26665  uspgr2wlkeq  27435  pthdivtx  27518  spthdep  27523  spthonepeq  27541  usgr2trlncl  27549  ccatf1  30651  swrdf1  30656  cycpmrn  30835  f1resveqaeq  32468  poimirlem1  35058  poimirlem9  35066  poimirlem22  35079  mblfinlem2  35095  isomuspgrlem1  44345
  Copyright terms: Public domain W3C validator