| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1veqaeq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| f1veqaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 7229 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑))) | |
| 2 | fveqeq2 6867 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝑑))) | |
| 3 | eqeq1 2733 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐 = 𝑑 ↔ 𝐶 = 𝑑)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑐 = 𝐶 → (((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑))) |
| 5 | fveq2 6858 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝐹‘𝑑) = (𝐹‘𝐷)) | |
| 6 | 5 | eqeq2d 2740 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((𝐹‘𝐶) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 7 | eqeq2 2741 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝐶 = 𝑑 ↔ 𝐶 = 𝐷)) | |
| 8 | 6, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 9 | 4, 8 | rspc2v 3599 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 10 | 9 | com12 32 | . . 3 ⊢ (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ⟶wf 6507 –1-1→wf1 6508 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fv 6519 |
| This theorem is referenced by: f1cofveqaeq 7232 f1cofveqaeqALT 7233 dff14i 7234 f1fveq 7237 f1cdmsn 7257 f1prex 7259 f1ocnvfvrneq 7261 fvf1pr 7282 f1o2ndf1 8101 fvf1tp 13751 f1ghm0to0 19177 symgfvne 19311 mat2pmatf1 22616 f1otrg 28798 uspgr2wlkeq 29574 pthdivtx 29657 spthdep 29664 spthonepeq 29682 usgr2trlncl 29690 ccatf1 32870 swrdf1 32878 cycpmrn 33100 f1resveqaeq 35075 vonf1owev 35095 poimirlem1 37615 poimirlem9 37623 poimirlem22 37636 mblfinlem2 37652 ricdrng1 42516 permaxext 44995 isuspgrim0lem 47893 isubgr3stgrlem7 47971 |
| Copyright terms: Public domain | W3C validator |