| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1veqaeq | Structured version Visualization version GIF version | ||
| Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.) |
| Ref | Expression |
|---|---|
| f1veqaeq | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dff13 7252 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑))) | |
| 2 | fveqeq2 6890 | . . . . . 6 ⊢ (𝑐 = 𝐶 → ((𝐹‘𝑐) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝑑))) | |
| 3 | eqeq1 2740 | . . . . . 6 ⊢ (𝑐 = 𝐶 → (𝑐 = 𝑑 ↔ 𝐶 = 𝑑)) | |
| 4 | 2, 3 | imbi12d 344 | . . . . 5 ⊢ (𝑐 = 𝐶 → (((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑))) |
| 5 | fveq2 6881 | . . . . . . 7 ⊢ (𝑑 = 𝐷 → (𝐹‘𝑑) = (𝐹‘𝐷)) | |
| 6 | 5 | eqeq2d 2747 | . . . . . 6 ⊢ (𝑑 = 𝐷 → ((𝐹‘𝐶) = (𝐹‘𝑑) ↔ (𝐹‘𝐶) = (𝐹‘𝐷))) |
| 7 | eqeq2 2748 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝐶 = 𝑑 ↔ 𝐶 = 𝐷)) | |
| 8 | 6, 7 | imbi12d 344 | . . . . 5 ⊢ (𝑑 = 𝐷 → (((𝐹‘𝐶) = (𝐹‘𝑑) → 𝐶 = 𝑑) ↔ ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 9 | 4, 8 | rspc2v 3617 | . . . 4 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 10 | 9 | com12 32 | . . 3 ⊢ (∀𝑐 ∈ 𝐴 ∀𝑑 ∈ 𝐴 ((𝐹‘𝑐) = (𝐹‘𝑑) → 𝑐 = 𝑑) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 11 | 1, 10 | simplbiim 504 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷))) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐴)) → ((𝐹‘𝐶) = (𝐹‘𝐷) → 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 |
| This theorem is referenced by: f1cofveqaeq 7255 f1cofveqaeqALT 7256 dff14i 7257 f1fveq 7260 f1cdmsn 7280 f1prex 7282 f1ocnvfvrneq 7284 fvf1pr 7305 f1o2ndf1 8126 fvf1tp 13811 f1ghm0to0 19233 symgfvne 19367 mat2pmatf1 22672 f1otrg 28855 uspgr2wlkeq 29631 pthdivtx 29714 spthdep 29721 spthonepeq 29739 usgr2trlncl 29747 ccatf1 32929 swrdf1 32937 cycpmrn 33159 f1resveqaeq 35121 poimirlem1 37650 poimirlem9 37658 poimirlem22 37671 mblfinlem2 37687 ricdrng1 42518 permaxext 44997 isuspgrim0lem 47873 isubgr3stgrlem7 47951 |
| Copyright terms: Public domain | W3C validator |