MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1veqaeq Structured version   Visualization version   GIF version

Theorem f1veqaeq 7124
Description: If the values of a one-to-one function for two arguments are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
Assertion
Ref Expression
f1veqaeq ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))

Proof of Theorem f1veqaeq
Dummy variables 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dff13 7122 . . 3 (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑)))
2 fveqeq2 6777 . . . . . 6 (𝑐 = 𝐶 → ((𝐹𝑐) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝑑)))
3 eqeq1 2743 . . . . . 6 (𝑐 = 𝐶 → (𝑐 = 𝑑𝐶 = 𝑑))
42, 3imbi12d 344 . . . . 5 (𝑐 = 𝐶 → (((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑)))
5 fveq2 6768 . . . . . . 7 (𝑑 = 𝐷 → (𝐹𝑑) = (𝐹𝐷))
65eqeq2d 2750 . . . . . 6 (𝑑 = 𝐷 → ((𝐹𝐶) = (𝐹𝑑) ↔ (𝐹𝐶) = (𝐹𝐷)))
7 eqeq2 2751 . . . . . 6 (𝑑 = 𝐷 → (𝐶 = 𝑑𝐶 = 𝐷))
86, 7imbi12d 344 . . . . 5 (𝑑 = 𝐷 → (((𝐹𝐶) = (𝐹𝑑) → 𝐶 = 𝑑) ↔ ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
94, 8rspc2v 3570 . . . 4 ((𝐶𝐴𝐷𝐴) → (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
109com12 32 . . 3 (∀𝑐𝐴𝑑𝐴 ((𝐹𝑐) = (𝐹𝑑) → 𝑐 = 𝑑) → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
111, 10simplbiim 504 . 2 (𝐹:𝐴1-1𝐵 → ((𝐶𝐴𝐷𝐴) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷)))
1211imp 406 1 ((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wral 3065  wf 6426  1-1wf1 6427  cfv 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fv 6438
This theorem is referenced by:  f1cofveqaeq  7125  f1cofveqaeqALT  7126  2f1fvneq  7127  f1fveq  7129  f1prex  7149  f1ocnvfvrneq  7151  f1o2ndf1  7947  symgfvne  18969  f1ghm0to0  19965  mat2pmatf1  21859  f1otrg  27213  uspgr2wlkeq  27993  pthdivtx  28076  spthdep  28081  spthonepeq  28099  usgr2trlncl  28107  ccatf1  31202  swrdf1  31207  cycpmrn  31389  f1resveqaeq  33036  poimirlem1  35757  poimirlem9  35765  poimirlem22  35778  mblfinlem2  35794  isomuspgrlem1  45231
  Copyright terms: Public domain W3C validator