|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > f1cofveqaeqALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of f1cofveqaeq 7278, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| f1cofveqaeqALT | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | f1f 6804 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3 7008 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
| 3 | 2 | adantrr 717 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | 
| 4 | fvco3 7008 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) | |
| 5 | 4 | adantrl 716 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) | 
| 6 | 3, 5 | eqeq12d 2753 | . . . . . 6 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) | 
| 7 | 6 | ex 412 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) | 
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) | 
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) | 
| 10 | 9 | imp 406 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) | 
| 11 | f1co 6815 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 12 | f1veqaeq 7277 | . . 3 ⊢ (((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) | |
| 13 | 11, 12 | sylan 580 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) | 
| 14 | 10, 13 | sylbird 260 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∘ ccom 5689 ⟶wf 6557 –1-1→wf1 6558 ‘cfv 6561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fv 6569 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |