| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cofveqaeqALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of f1cofveqaeq 7235, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| f1cofveqaeqALT | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6759 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3 6963 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
| 3 | 2 | adantrr 717 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 4 | fvco3 6963 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) | |
| 5 | 4 | adantrl 716 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) |
| 6 | 3, 5 | eqeq12d 2746 | . . . . . 6 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
| 7 | 6 | ex 412 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 10 | 9 | imp 406 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
| 11 | f1co 6770 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 12 | f1veqaeq 7234 | . . 3 ⊢ (((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) | |
| 13 | 11, 12 | sylan 580 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) |
| 14 | 10, 13 | sylbird 260 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∘ ccom 5645 ⟶wf 6510 –1-1→wf1 6511 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |