MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeqALT Structured version   Visualization version   GIF version

Theorem f1cofveqaeqALT 7132
Description: Alternate proof of f1cofveqaeq 7131, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
f1cofveqaeqALT (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeqALT
StepHypRef Expression
1 f1f 6670 . . . . 5 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
2 fvco3 6867 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
32adantrr 714 . . . . . . 7 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
4 fvco3 6867 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → ((𝐹𝐺)‘𝑌) = (𝐹‘(𝐺𝑌)))
54adantrl 713 . . . . . . 7 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹𝐺)‘𝑌) = (𝐹‘(𝐺𝑌)))
63, 5eqeq12d 2754 . . . . . 6 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌))))
76ex 413 . . . . 5 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
81, 7syl 17 . . . 4 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
98adantl 482 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
109imp 407 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌))))
11 f1co 6682 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
12 f1veqaeq 7130 . . 3 (((𝐹𝐺):𝐴1-1𝐶 ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) → 𝑋 = 𝑌))
1311, 12sylan 580 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) → 𝑋 = 𝑌))
1410, 13sylbird 259 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  ccom 5593  wf 6429  1-1wf1 6430  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator