| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1cofveqaeqALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of f1cofveqaeq 7255, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| f1cofveqaeqALT | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6779 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
| 2 | fvco3 6983 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
| 3 | 2 | adantrr 717 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
| 4 | fvco3 6983 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) | |
| 5 | 4 | adantrl 716 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) |
| 6 | 3, 5 | eqeq12d 2752 | . . . . . 6 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
| 7 | 6 | ex 412 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
| 10 | 9 | imp 406 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
| 11 | f1co 6790 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
| 12 | f1veqaeq 7254 | . . 3 ⊢ (((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) | |
| 13 | 11, 12 | sylan 580 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) |
| 14 | 10, 13 | sylbird 260 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∘ ccom 5663 ⟶wf 6532 –1-1→wf1 6533 ‘cfv 6536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fv 6544 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |