MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1cofveqaeqALT Structured version   Visualization version   GIF version

Theorem f1cofveqaeqALT 7236
Description: Alternate proof of f1cofveqaeq 7235, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
f1cofveqaeqALT (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))

Proof of Theorem f1cofveqaeqALT
StepHypRef Expression
1 f1f 6759 . . . . 5 (𝐺:𝐴1-1𝐵𝐺:𝐴𝐵)
2 fvco3 6963 . . . . . . . 8 ((𝐺:𝐴𝐵𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
32adantrr 717 . . . . . . 7 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
4 fvco3 6963 . . . . . . . 8 ((𝐺:𝐴𝐵𝑌𝐴) → ((𝐹𝐺)‘𝑌) = (𝐹‘(𝐺𝑌)))
54adantrl 716 . . . . . . 7 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹𝐺)‘𝑌) = (𝐹‘(𝐺𝑌)))
63, 5eqeq12d 2746 . . . . . 6 ((𝐺:𝐴𝐵 ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌))))
76ex 412 . . . . 5 (𝐺:𝐴𝐵 → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
81, 7syl 17 . . . 4 (𝐺:𝐴1-1𝐵 → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
98adantl 481 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → ((𝑋𝐴𝑌𝐴) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)))))
109imp 406 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) ↔ (𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌))))
11 f1co 6770 . . 3 ((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) → (𝐹𝐺):𝐴1-1𝐶)
12 f1veqaeq 7234 . . 3 (((𝐹𝐺):𝐴1-1𝐶 ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) → 𝑋 = 𝑌))
1311, 12sylan 580 . 2 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → (((𝐹𝐺)‘𝑋) = ((𝐹𝐺)‘𝑌) → 𝑋 = 𝑌))
1410, 13sylbird 260 1 (((𝐹:𝐵1-1𝐶𝐺:𝐴1-1𝐵) ∧ (𝑋𝐴𝑌𝐴)) → ((𝐹‘(𝐺𝑋)) = (𝐹‘(𝐺𝑌)) → 𝑋 = 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  ccom 5645  wf 6510  1-1wf1 6511  cfv 6514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fv 6522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator