![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1cofveqaeqALT | Structured version Visualization version GIF version |
Description: Alternate proof of f1cofveqaeq 7262, 1 essential step shorter, but having more bytes (305 versus 282). (Contributed by AV, 3-Feb-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
f1cofveqaeqALT | ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6787 | . . . . 5 ⊢ (𝐺:𝐴–1-1→𝐵 → 𝐺:𝐴⟶𝐵) | |
2 | fvco3 6990 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) | |
3 | 2 | adantrr 715 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑋) = (𝐹‘(𝐺‘𝑋))) |
4 | fvco3 6990 | . . . . . . . 8 ⊢ ((𝐺:𝐴⟶𝐵 ∧ 𝑌 ∈ 𝐴) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) | |
5 | 4 | adantrl 714 | . . . . . . 7 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹 ∘ 𝐺)‘𝑌) = (𝐹‘(𝐺‘𝑌))) |
6 | 3, 5 | eqeq12d 2741 | . . . . . 6 ⊢ ((𝐺:𝐴⟶𝐵 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
7 | 6 | ex 411 | . . . . 5 ⊢ (𝐺:𝐴⟶𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
8 | 1, 7 | syl 17 | . . . 4 ⊢ (𝐺:𝐴–1-1→𝐵 → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
9 | 8 | adantl 480 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌))))) |
10 | 9 | imp 405 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) ↔ (𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)))) |
11 | f1co 6798 | . . 3 ⊢ ((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) → (𝐹 ∘ 𝐺):𝐴–1-1→𝐶) | |
12 | f1veqaeq 7261 | . . 3 ⊢ (((𝐹 ∘ 𝐺):𝐴–1-1→𝐶 ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) | |
13 | 11, 12 | sylan 578 | . 2 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → (((𝐹 ∘ 𝐺)‘𝑋) = ((𝐹 ∘ 𝐺)‘𝑌) → 𝑋 = 𝑌)) |
14 | 10, 13 | sylbird 259 | 1 ⊢ (((𝐹:𝐵–1-1→𝐶 ∧ 𝐺:𝐴–1-1→𝐵) ∧ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴)) → ((𝐹‘(𝐺‘𝑋)) = (𝐹‘(𝐺‘𝑌)) → 𝑋 = 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∘ ccom 5677 ⟶wf 6539 –1-1→wf1 6540 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5295 ax-nul 5302 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5145 df-opab 5207 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fv 6551 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |