Proof of Theorem dfac12lem2
Step | Hyp | Ref
| Expression |
1 | | dfac12.4 |
. . . . . . . . . . . . . 14
⊢ 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom
𝑥) ↦ if(dom 𝑥 = ∪
dom 𝑥, ((suc ∪ ran ∪ ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((◡OrdIso( E , ran (𝑥‘∪ dom 𝑥)) ∘ (𝑥‘∪ dom 𝑥)) “ 𝑦)))))) |
2 | 1 | tfr1 8199 |
. . . . . . . . . . . . 13
⊢ 𝐺 Fn On |
3 | | fnfun 6517 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn On → Fun 𝐺) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun 𝐺 |
5 | | dfac12.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ On) |
6 | | funimaexg 6504 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐺 ∧ 𝐶 ∈ On) → (𝐺 “ 𝐶) ∈ V) |
7 | 4, 5, 6 | sylancr 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 “ 𝐶) ∈ V) |
8 | | uniexg 7571 |
. . . . . . . . . . 11
⊢ ((𝐺 “ 𝐶) ∈ V → ∪ (𝐺
“ 𝐶) ∈
V) |
9 | | rnexg 7725 |
. . . . . . . . . . 11
⊢ (∪ (𝐺
“ 𝐶) ∈ V →
ran ∪ (𝐺 “ 𝐶) ∈ V) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ∈
V) |
11 | | dfac12.8 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
12 | | f1f 6654 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → (𝐺‘𝑧):(𝑅1‘𝑧)⟶On) |
13 | | fssxp 6612 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)⟶On → (𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On)) |
14 | | ssv 3941 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(𝑅1‘𝑧) ⊆ V |
15 | | xpss1 5599 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((𝑅1‘𝑧) ⊆ V →
((𝑅1‘𝑧) × On) ⊆ (V ×
On)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((𝑅1‘𝑧) × On) ⊆ (V ×
On) |
17 | | sstr 3925 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) ∧
((𝑅1‘𝑧) × On) ⊆ (V × On)) →
(𝐺‘𝑧) ⊆ (V × On)) |
18 | 16, 17 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) → (𝐺‘𝑧) ⊆ (V × On)) |
19 | | fvex 6769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺‘𝑧) ∈ V |
20 | 19 | elpw 4534 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑧) ∈ 𝒫 (V × On) ↔
(𝐺‘𝑧) ⊆ (V × On)) |
21 | 18, 20 | sylibr 233 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) → (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
22 | 12, 13, 21 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
23 | 22 | ralimi 3086 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
24 | 11, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
25 | | onss 7611 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
26 | 5, 25 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ⊆ On) |
27 | 2 | fndmi 6521 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝐺 = On |
28 | 26, 27 | sseqtrrdi 3968 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ dom 𝐺) |
29 | | funimass4 6816 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐺 ∧ 𝐶 ⊆ dom 𝐺) → ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On))) |
30 | 4, 28, 29 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On))) |
31 | 24, 30 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 “ 𝐶) ⊆ 𝒫 (V ×
On)) |
32 | | sspwuni 5025 |
. . . . . . . . . . . . 13
⊢ ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∪ (𝐺 “ 𝐶) ⊆ (V × On)) |
33 | 31, 32 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ (𝐺
“ 𝐶) ⊆ (V
× On)) |
34 | | rnss 5837 |
. . . . . . . . . . . 12
⊢ (∪ (𝐺
“ 𝐶) ⊆ (V
× On) → ran ∪ (𝐺 “ 𝐶) ⊆ ran (V ×
On)) |
35 | 33, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆ ran (V
× On)) |
36 | | rnxpss 6064 |
. . . . . . . . . . 11
⊢ ran (V
× On) ⊆ On |
37 | 35, 36 | sstrdi 3929 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆
On) |
38 | | ssonuni 7607 |
. . . . . . . . . 10
⊢ (ran
∪ (𝐺 “ 𝐶) ∈ V → (ran ∪ (𝐺
“ 𝐶) ⊆ On
→ ∪ ran ∪ (𝐺 “ 𝐶) ∈ On)) |
39 | 10, 37, 38 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
40 | | suceloni 7635 |
. . . . . . . . 9
⊢ (∪ ran ∪ (𝐺 “ 𝐶) ∈ On → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
41 | 39, 40 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
42 | 41 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
43 | | rankon 9484 |
. . . . . . 7
⊢
(rank‘𝑦)
∈ On |
44 | | omcl 8328 |
. . . . . . 7
⊢ ((suc
∪ ran ∪ (𝐺 “ 𝐶) ∈ On ∧ (rank‘𝑦) ∈ On) → (suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On) |
45 | 42, 43, 44 | sylancl 585 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On) |
46 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑧 = suc (rank‘𝑦) → (𝐺‘𝑧) = (𝐺‘suc (rank‘𝑦))) |
47 | | f1eq1 6649 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑧) = (𝐺‘suc (rank‘𝑦)) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On)) |
49 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑧 = suc (rank‘𝑦) →
(𝑅1‘𝑧) = (𝑅1‘suc
(rank‘𝑦))) |
50 | | f1eq2 6650 |
. . . . . . . . . . 11
⊢
((𝑅1‘𝑧) = (𝑅1‘suc
(rank‘𝑦)) →
((𝐺‘suc
(rank‘𝑦)):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
51 | 49, 50 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
52 | 48, 51 | bitrd 278 |
. . . . . . . . 9
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
53 | 11 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
54 | | rankr1ai 9487 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
(𝑅1‘𝐶) → (rank‘𝑦) ∈ 𝐶) |
55 | 54 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ 𝐶) |
56 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝐶 = ∪ 𝐶) |
57 | 55, 56 | eleqtrd 2841 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ ∪ 𝐶) |
58 | | eloni 6261 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ On → Ord 𝐶) |
59 | 5, 58 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord 𝐶) |
60 | 59 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → Ord 𝐶) |
61 | | ordsucuniel 7646 |
. . . . . . . . . . 11
⊢ (Ord
𝐶 → ((rank‘𝑦) ∈ ∪ 𝐶
↔ suc (rank‘𝑦)
∈ 𝐶)) |
62 | 60, 61 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((rank‘𝑦) ∈ ∪ 𝐶
↔ suc (rank‘𝑦)
∈ 𝐶)) |
63 | 57, 62 | mpbid 231 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → suc (rank‘𝑦) ∈ 𝐶) |
64 | 52, 53, 63 | rspcdva 3554 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
65 | | f1f 6654 |
. . . . . . . 8
⊢ ((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))⟶On) |
66 | 64, 65 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))⟶On) |
67 | | r1elwf 9485 |
. . . . . . . . 9
⊢ (𝑦 ∈
(𝑅1‘𝐶) → 𝑦 ∈ ∪
(𝑅1 “ On)) |
68 | 67 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ ∪
(𝑅1 “ On)) |
69 | | rankidb 9489 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈
(𝑅1‘suc (rank‘𝑦))) |
70 | 68, 69 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
71 | 66, 70 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ On) |
72 | | oacl 8327 |
. . . . . 6
⊢ (((suc
∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ On) → ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) ∈ On) |
73 | 45, 71, 72 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) ∈ On) |
74 | | dfac12.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On) |
75 | | f1f 6654 |
. . . . . . . 8
⊢ (𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
76 | 74, 75 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
77 | 76 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
78 | | imassrn 5969 |
. . . . . . . 8
⊢ (𝐻 “ 𝑦) ⊆ ran 𝐻 |
79 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘∪ 𝐶)
∈ V |
80 | 79 | rnex 7733 |
. . . . . . . . . . . . . 14
⊢ ran
(𝐺‘∪ 𝐶)
∈ V |
81 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∪
𝐶 → (𝐺‘𝑧) = (𝐺‘∪ 𝐶)) |
82 | | f1eq1 6649 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑧) = (𝐺‘∪ 𝐶) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On)) |
83 | 81, 82 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On)) |
84 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∪
𝐶 →
(𝑅1‘𝑧) = (𝑅1‘∪ 𝐶)) |
85 | | f1eq2 6650 |
. . . . . . . . . . . . . . . . . . 19
⊢
((𝑅1‘𝑧) = (𝑅1‘∪ 𝐶)
→ ((𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
86 | 84, 85 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
87 | 83, 86 | bitrd 278 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
88 | 11 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
89 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 ∈ On) |
90 | | onuni 7615 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ On → ∪ 𝐶
∈ On) |
91 | | sucidg 6329 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝐶
∈ On → ∪ 𝐶 ∈ suc ∪
𝐶) |
92 | 89, 90, 91 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ suc ∪ 𝐶) |
93 | 59 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → Ord 𝐶) |
94 | | orduniorsuc 7652 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝐶 → (𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶)) |
95 | 93, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → (𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶)) |
96 | 95 | orcanai 999 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 = suc ∪ 𝐶) |
97 | 92, 96 | eleqtrrd 2842 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ 𝐶) |
98 | 87, 88, 97 | rspcdva 3554 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On) |
99 | | f1f 6654 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)⟶On) |
100 | | frn 6591 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)⟶On → ran (𝐺‘∪ 𝐶) ⊆ On) |
101 | 98, 99, 100 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ⊆ On) |
102 | | epweon 7603 |
. . . . . . . . . . . . . . 15
⊢ E We
On |
103 | | wess 5567 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝐺‘∪ 𝐶)
⊆ On → ( E We On → E We ran (𝐺‘∪ 𝐶))) |
104 | 101, 102,
103 | mpisyl 21 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → E We ran (𝐺‘∪ 𝐶)) |
105 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢ OrdIso( E
, ran (𝐺‘∪ 𝐶))
= OrdIso( E , ran (𝐺‘∪ 𝐶)) |
106 | 105 | oiiso 9226 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝐺‘∪ 𝐶)
∈ V ∧ E We ran (𝐺‘∪ 𝐶)) → OrdIso( E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶))) |
107 | 80, 104, 106 | sylancr 586 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → OrdIso( E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶))) |
108 | | isof1o 7174 |
. . . . . . . . . . . . 13
⊢ (OrdIso(
E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶)) → OrdIso( E , ran (𝐺‘∪ 𝐶)):dom OrdIso( E , ran (𝐺‘∪ 𝐶))–1-1-onto→ran
(𝐺‘∪ 𝐶)) |
109 | | f1ocnv 6712 |
. . . . . . . . . . . . 13
⊢ (OrdIso(
E , ran (𝐺‘∪ 𝐶)):dom OrdIso( E , ran (𝐺‘∪ 𝐶))–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1-onto→dom
OrdIso( E , ran (𝐺‘∪ 𝐶))) |
110 | | f1of1 6699 |
. . . . . . . . . . . . 13
⊢ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1-onto→dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) → ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
111 | 107, 108,
109, 110 | 4syl 19 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
112 | | f1f1orn 6711 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)) |
113 | | f1of1 6699 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) |
114 | 98, 112, 113 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) |
115 | | f1co 6666 |
. . . . . . . . . . . 12
⊢ ((◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∧ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) → (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
116 | 111, 114,
115 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
117 | | dfac12.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) |
118 | | f1eq1 6649 |
. . . . . . . . . . . 12
⊢ (𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) → (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ↔ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)))) |
119 | 117, 118 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ↔ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
120 | 116, 119 | sylibr 233 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
121 | | f1f 6654 |
. . . . . . . . . 10
⊢ (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) → 𝐻:(𝑅1‘∪ 𝐶)⟶dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
122 | | frn 6591 |
. . . . . . . . . 10
⊢ (𝐻:(𝑅1‘∪ 𝐶)⟶dom OrdIso( E , ran (𝐺‘∪ 𝐶))
→ ran 𝐻 ⊆ dom
OrdIso( E , ran (𝐺‘∪ 𝐶))) |
123 | 120, 121,
122 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran 𝐻 ⊆ dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
124 | | harcl 9248 |
. . . . . . . . . . 11
⊢
(har‘(𝑅1‘𝐴)) ∈ On |
125 | 124 | onordi 6356 |
. . . . . . . . . 10
⊢ Ord
(har‘(𝑅1‘𝐴)) |
126 | 105 | oion 9225 |
. . . . . . . . . . . 12
⊢ (ran
(𝐺‘∪ 𝐶)
∈ V → dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∈ On) |
127 | 80, 126 | mp1i 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
∈ On) |
128 | 105 | oien 9227 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝐺‘∪ 𝐶)
∈ V ∧ E We ran (𝐺‘∪ 𝐶)) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≈ ran (𝐺‘∪ 𝐶)) |
129 | 80, 104, 128 | sylancr 586 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≈ ran (𝐺‘∪ 𝐶)) |
130 | | fvex 6769 |
. . . . . . . . . . . . . . 15
⊢
(𝑅1‘∪ 𝐶) ∈ V |
131 | 130 | f1oen 8716 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ (𝑅1‘∪ 𝐶) ≈ ran (𝐺‘∪ 𝐶)) |
132 | | ensym 8744 |
. . . . . . . . . . . . . 14
⊢
((𝑅1‘∪ 𝐶) ≈ ran (𝐺‘∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≈
(𝑅1‘∪ 𝐶)) |
133 | 98, 112, 131, 132 | 4syl 19 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≈
(𝑅1‘∪ 𝐶)) |
134 | | fvex 6769 |
. . . . . . . . . . . . . 14
⊢
(𝑅1‘𝐴) ∈ V |
135 | | dfac12.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ On) |
136 | 135 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐴 ∈ On) |
137 | | dfac12.6 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
138 | 137 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 ⊆ 𝐴) |
139 | 138, 97 | sseldd 3918 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ 𝐴) |
140 | | r1ord2 9470 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → (∪ 𝐶
∈ 𝐴 →
(𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴))) |
141 | 136, 139,
140 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴)) |
142 | | ssdomg 8741 |
. . . . . . . . . . . . . 14
⊢
((𝑅1‘𝐴) ∈ V →
((𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴) →
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴))) |
143 | 134, 141,
142 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴)) |
144 | | endomtr 8753 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝐺‘∪ 𝐶)
≈ (𝑅1‘∪ 𝐶) ∧
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴)) → ran (𝐺‘∪ 𝐶) ≼
(𝑅1‘𝐴)) |
145 | 133, 143,
144 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≼
(𝑅1‘𝐴)) |
146 | | endomtr 8753 |
. . . . . . . . . . . 12
⊢ ((dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) ≈ ran (𝐺‘∪ 𝐶)
∧ ran (𝐺‘∪ 𝐶)
≼ (𝑅1‘𝐴)) → dom OrdIso( E , ran (𝐺‘∪ 𝐶))
≼ (𝑅1‘𝐴)) |
147 | 129, 145,
146 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≼ (𝑅1‘𝐴)) |
148 | | elharval 9250 |
. . . . . . . . . . 11
⊢ (dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) ∈
(har‘(𝑅1‘𝐴)) ↔ (dom OrdIso( E , ran (𝐺‘∪ 𝐶))
∈ On ∧ dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ≼
(𝑅1‘𝐴))) |
149 | 127, 147,
148 | sylanbrc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
∈ (har‘(𝑅1‘𝐴))) |
150 | | ordelss 6267 |
. . . . . . . . . 10
⊢ ((Ord
(har‘(𝑅1‘𝐴)) ∧ dom OrdIso( E , ran (𝐺‘∪ 𝐶))
∈ (har‘(𝑅1‘𝐴))) → dom OrdIso( E , ran (𝐺‘∪ 𝐶))
⊆ (har‘(𝑅1‘𝐴))) |
151 | 125, 149,
150 | sylancr 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
⊆ (har‘(𝑅1‘𝐴))) |
152 | 123, 151 | sstrd 3927 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran 𝐻 ⊆
(har‘(𝑅1‘𝐴))) |
153 | 78, 152 | sstrid 3928 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ⊆
(har‘(𝑅1‘𝐴))) |
154 | | fvex 6769 |
. . . . . . . 8
⊢
(har‘(𝑅1‘𝐴)) ∈ V |
155 | 154 | elpw2 5264 |
. . . . . . 7
⊢ ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ↔ (𝐻 “ 𝑦) ⊆
(har‘(𝑅1‘𝐴))) |
156 | 153, 155 | sylibr 233 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
157 | 77, 156 | ffvelrnd 6944 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐹‘(𝐻 “ 𝑦)) ∈ On) |
158 | 73, 157 | ifclda 4491 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) ∈ On) |
159 | 158 | ex 412 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝑅1‘𝐶) → if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) ∈ On)) |
160 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝐶 = ∪
𝐶 → if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦))) |
161 | | iftrue 4462 |
. . . . . . . 8
⊢ (𝐶 = ∪
𝐶 → if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
162 | 160, 161 | eqeq12d 2754 |
. . . . . . 7
⊢ (𝐶 = ∪
𝐶 → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ ((suc ∪
ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
163 | 162 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ ((suc ∪
ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
164 | 41 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
165 | | nsuceq0 6331 |
. . . . . . . 8
⊢ suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅ |
166 | 165 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅) |
167 | 43 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ On) |
168 | | onsucuni 7650 |
. . . . . . . . . . 11
⊢ (ran
∪ (𝐺 “ 𝐶) ⊆ On → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
169 | 37, 168 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
170 | 169 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
171 | 26 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝐶 ⊆ On) |
172 | | fnfvima 7091 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn On ∧ 𝐶 ⊆ On ∧ suc (rank‘𝑦) ∈ 𝐶) → (𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶)) |
173 | 2, 171, 63, 172 | mp3an2i 1464 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶)) |
174 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ ((𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶) → (𝐺‘suc (rank‘𝑦)) ⊆ ∪
(𝐺 “ 𝐶)) |
175 | | rnss 5837 |
. . . . . . . . . . 11
⊢ ((𝐺‘suc (rank‘𝑦)) ⊆ ∪ (𝐺
“ 𝐶) → ran
(𝐺‘suc
(rank‘𝑦)) ⊆ ran
∪ (𝐺 “ 𝐶)) |
176 | 173, 174,
175 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ran (𝐺‘suc (rank‘𝑦)) ⊆ ran ∪
(𝐺 “ 𝐶)) |
177 | | f1fn 6655 |
. . . . . . . . . . . 12
⊢ ((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On → (𝐺‘suc (rank‘𝑦)) Fn (𝑅1‘suc
(rank‘𝑦))) |
178 | 64, 177 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)) Fn (𝑅1‘suc
(rank‘𝑦))) |
179 | | fnfvelrn 6940 |
. . . . . . . . . . 11
⊢ (((𝐺‘suc (rank‘𝑦)) Fn
(𝑅1‘suc (rank‘𝑦)) ∧ 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) →
((𝐺‘suc
(rank‘𝑦))‘𝑦) ∈ ran (𝐺‘suc (rank‘𝑦))) |
180 | 178, 70, 179 | syl2anc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ ran (𝐺‘suc (rank‘𝑦))) |
181 | 176, 180 | sseldd 3918 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ ran ∪
(𝐺 “ 𝐶)) |
182 | 170, 181 | sseldd 3918 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
183 | 182 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
184 | | rankon 9484 |
. . . . . . . 8
⊢
(rank‘𝑧)
∈ On |
185 | 184 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑧) ∈ On) |
186 | | eleq1w 2821 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝐶) ↔ 𝑧 ∈ (𝑅1‘𝐶))) |
187 | 186 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ↔ (𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)))) |
188 | 187 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶))) |
189 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) |
190 | | suceq 6316 |
. . . . . . . . . . . . . 14
⊢
((rank‘𝑦) =
(rank‘𝑧) → suc
(rank‘𝑦) = suc
(rank‘𝑧)) |
191 | 189, 190 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → suc (rank‘𝑦) = suc (rank‘𝑧)) |
192 | 191 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐺‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑧))) |
193 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
194 | 192, 193 | fveq12d 6763 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) |
195 | 194 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶) ↔ ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶))) |
196 | 188, 195 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) ↔ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)))) |
197 | 196, 182 | chvarvv 2003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
198 | 197 | adantlrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
199 | | omopth2 8377 |
. . . . . . 7
⊢ (((suc
∪ ran ∪ (𝐺 “ 𝐶) ∈ On ∧ suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅) ∧ ((rank‘𝑦) ∈ On ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) ∧ ((rank‘𝑧) ∈ On ∧ ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶))) → (((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
200 | 164, 166,
167, 183, 185, 198, 199 | syl222anc 1384 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
201 | 190 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → suc (rank‘𝑦) = suc (rank‘𝑧)) |
202 | 201 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (𝐺‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑧))) |
203 | 202 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → ((𝐺‘suc (rank‘𝑦))‘𝑧) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) |
204 | 203 | eqeq2d 2749 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
205 | 64 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
206 | 205 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
207 | 70 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
208 | 207 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
209 | | r1elwf 9485 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈
(𝑅1‘𝐶) → 𝑧 ∈ ∪
(𝑅1 “ On)) |
210 | | rankidb 9489 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝑧 ∈
(𝑅1‘suc (rank‘𝑧))) |
211 | 209, 210 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(𝑅1‘𝐶) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
212 | 211 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
213 | 212 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
214 | 201 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) →
(𝑅1‘suc (rank‘𝑦)) = (𝑅1‘suc
(rank‘𝑧))) |
215 | 213, 214 | eleqtrrd 2842 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑦))) |
216 | | f1fveq 7116 |
. . . . . . . . . . 11
⊢ (((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On ∧ (𝑦 ∈ (𝑅1‘suc
(rank‘𝑦)) ∧ 𝑧 ∈
(𝑅1‘suc (rank‘𝑦)))) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ 𝑦 = 𝑧)) |
217 | 206, 208,
215, 216 | syl12anc 833 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ 𝑦 = 𝑧)) |
218 | 204, 217 | bitr3d 280 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧) ↔ 𝑦 = 𝑧)) |
219 | 218 | biimpd 228 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧) → 𝑦 = 𝑧)) |
220 | 219 | expimpd 453 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) → 𝑦 = 𝑧)) |
221 | 189, 194 | jca 511 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
222 | 220, 221 | impbid1 224 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ 𝑦 = 𝑧)) |
223 | 163, 200,
222 | 3bitrd 304 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
224 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝐶 = ∪ 𝐶
→ if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = (𝐹‘(𝐻 “ 𝑦))) |
225 | | iffalse 4465 |
. . . . . . . 8
⊢ (¬
𝐶 = ∪ 𝐶
→ if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) = (𝐹‘(𝐻 “ 𝑧))) |
226 | 224, 225 | eqeq12d 2754 |
. . . . . . 7
⊢ (¬
𝐶 = ∪ 𝐶
→ (if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ (𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)))) |
227 | 226 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ (𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)))) |
228 | 74 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On) |
229 | 156 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
230 | 187 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶))) |
231 | | imaeq2 5954 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐻 “ 𝑦) = (𝐻 “ 𝑧)) |
232 | 231 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ↔ (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴)))) |
233 | 230, 232 | imbi12d 344 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) ↔ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))))) |
234 | 233, 156 | chvarvv 2003 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
235 | 234 | adantlrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
236 | | f1fveq 7116 |
. . . . . . 7
⊢ ((𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On ∧ ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ∧ (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴)))) → ((𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)) ↔ (𝐻 “ 𝑦) = (𝐻 “ 𝑧))) |
237 | 228, 229,
235, 236 | syl12anc 833 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → ((𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)) ↔ (𝐻 “ 𝑦) = (𝐻 “ 𝑧))) |
238 | 120 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
239 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ∈
(𝑅1‘𝐶)) |
240 | 96 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘𝐶) = (𝑅1‘suc ∪ 𝐶)) |
241 | | r1suc 9459 |
. . . . . . . . . . . 12
⊢ (∪ 𝐶
∈ On → (𝑅1‘suc ∪
𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
242 | 89, 90, 241 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘suc ∪ 𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
243 | 240, 242 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
244 | 243 | adantlrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) →
(𝑅1‘𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
245 | 239, 244 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ∈ 𝒫
(𝑅1‘∪ 𝐶)) |
246 | 245 | elpwid 4541 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ⊆
(𝑅1‘∪ 𝐶)) |
247 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ∈
(𝑅1‘𝐶)) |
248 | 247, 244 | eleqtrd 2841 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ∈ 𝒫
(𝑅1‘∪ 𝐶)) |
249 | 248 | elpwid 4541 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ⊆
(𝑅1‘∪ 𝐶)) |
250 | | f1imaeq 7119 |
. . . . . . 7
⊢ ((𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∧ (𝑦 ⊆ (𝑅1‘∪ 𝐶)
∧ 𝑧 ⊆
(𝑅1‘∪ 𝐶))) → ((𝐻 “ 𝑦) = (𝐻 “ 𝑧) ↔ 𝑦 = 𝑧)) |
251 | 238, 246,
249, 250 | syl12anc 833 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → ((𝐻 “ 𝑦) = (𝐻 “ 𝑧) ↔ 𝑦 = 𝑧)) |
252 | 227, 237,
251 | 3bitrd 304 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
253 | 223, 252 | pm2.61dan 809 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
254 | 253 | ex 412 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶)) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧))) |
255 | 159, 254 | dom2lem 8735 |
. 2
⊢ (𝜑 → (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On) |
256 | 135, 74, 1, 5, 117 | dfac12lem1 9830 |
. . 3
⊢ (𝜑 → (𝐺‘𝐶) = (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))))) |
257 | | f1eq1 6649 |
. . 3
⊢ ((𝐺‘𝐶) = (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))) → ((𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On ↔ (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On)) |
258 | 256, 257 | syl 17 |
. 2
⊢ (𝜑 → ((𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On ↔ (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On)) |
259 | 255, 258 | mpbird 256 |
1
⊢ (𝜑 → (𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On) |