Proof of Theorem dfac12lem2
Step | Hyp | Ref
| Expression |
1 | | dfac12.4 |
. . . . . . . . . . . . . 14
⊢ 𝐺 = recs((𝑥 ∈ V ↦ (𝑦 ∈ (𝑅1‘dom
𝑥) ↦ if(dom 𝑥 = ∪
dom 𝑥, ((suc ∪ ran ∪ ran 𝑥 ·o (rank‘𝑦)) +o ((𝑥‘suc (rank‘𝑦))‘𝑦)), (𝐹‘((◡OrdIso( E , ran (𝑥‘∪ dom 𝑥)) ∘ (𝑥‘∪ dom 𝑥)) “ 𝑦)))))) |
2 | 1 | tfr1 7885 |
. . . . . . . . . . . . 13
⊢ 𝐺 Fn On |
3 | | fnfun 6323 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn On → Fun 𝐺) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ Fun 𝐺 |
5 | | dfac12.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐶 ∈ On) |
6 | | funimaexg 6310 |
. . . . . . . . . . . 12
⊢ ((Fun
𝐺 ∧ 𝐶 ∈ On) → (𝐺 “ 𝐶) ∈ V) |
7 | 4, 5, 6 | sylancr 587 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐺 “ 𝐶) ∈ V) |
8 | | uniexg 7325 |
. . . . . . . . . . 11
⊢ ((𝐺 “ 𝐶) ∈ V → ∪ (𝐺
“ 𝐶) ∈
V) |
9 | | rnexg 7470 |
. . . . . . . . . . 11
⊢ (∪ (𝐺
“ 𝐶) ∈ V →
ran ∪ (𝐺 “ 𝐶) ∈ V) |
10 | 7, 8, 9 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ∈
V) |
11 | | dfac12.8 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
12 | | f1f 6443 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → (𝐺‘𝑧):(𝑅1‘𝑧)⟶On) |
13 | | fssxp 6402 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)⟶On → (𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On)) |
14 | | ssv 3912 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(𝑅1‘𝑧) ⊆ V |
15 | | xpss1 5462 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((𝑅1‘𝑧) ⊆ V →
((𝑅1‘𝑧) × On) ⊆ (V ×
On)) |
16 | 14, 15 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . 19
⊢
((𝑅1‘𝑧) × On) ⊆ (V ×
On) |
17 | | sstr 3897 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) ∧
((𝑅1‘𝑧) × On) ⊆ (V × On)) →
(𝐺‘𝑧) ⊆ (V × On)) |
18 | 16, 17 | mpan2 687 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) → (𝐺‘𝑧) ⊆ (V × On)) |
19 | | fvex 6551 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺‘𝑧) ∈ V |
20 | 19 | elpw 4459 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐺‘𝑧) ∈ 𝒫 (V × On) ↔
(𝐺‘𝑧) ⊆ (V × On)) |
21 | 18, 20 | sylibr 235 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐺‘𝑧) ⊆ ((𝑅1‘𝑧) × On) → (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
22 | 12, 13, 21 | 3syl 18 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
23 | 22 | ralimi 3127 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑧 ∈
𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
24 | 11, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On)) |
25 | | onss 7361 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐶 ∈ On → 𝐶 ⊆ On) |
26 | 5, 25 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐶 ⊆ On) |
27 | | fndm 6325 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn On → dom 𝐺 = On) |
28 | 2, 27 | ax-mp 5 |
. . . . . . . . . . . . . . . 16
⊢ dom 𝐺 = On |
29 | 26, 28 | syl6sseqr 3939 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐶 ⊆ dom 𝐺) |
30 | | funimass4 6598 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
𝐺 ∧ 𝐶 ⊆ dom 𝐺) → ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On))) |
31 | 4, 29, 30 | sylancr 587 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∀𝑧 ∈ 𝐶 (𝐺‘𝑧) ∈ 𝒫 (V ×
On))) |
32 | 24, 31 | mpbird 258 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐺 “ 𝐶) ⊆ 𝒫 (V ×
On)) |
33 | | sspwuni 4921 |
. . . . . . . . . . . . 13
⊢ ((𝐺 “ 𝐶) ⊆ 𝒫 (V × On) ↔
∪ (𝐺 “ 𝐶) ⊆ (V × On)) |
34 | 32, 33 | sylib 219 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ (𝐺
“ 𝐶) ⊆ (V
× On)) |
35 | | rnss 5691 |
. . . . . . . . . . . 12
⊢ (∪ (𝐺
“ 𝐶) ⊆ (V
× On) → ran ∪ (𝐺 “ 𝐶) ⊆ ran (V ×
On)) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆ ran (V
× On)) |
37 | | rnxpss 5905 |
. . . . . . . . . . 11
⊢ ran (V
× On) ⊆ On |
38 | 36, 37 | syl6ss 3901 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆
On) |
39 | | ssonuni 7357 |
. . . . . . . . . 10
⊢ (ran
∪ (𝐺 “ 𝐶) ∈ V → (ran ∪ (𝐺
“ 𝐶) ⊆ On
→ ∪ ran ∪ (𝐺 “ 𝐶) ∈ On)) |
40 | 10, 38, 39 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
41 | | suceloni 7384 |
. . . . . . . . 9
⊢ (∪ ran ∪ (𝐺 “ 𝐶) ∈ On → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
42 | 40, 41 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
43 | 42 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
44 | | rankon 9070 |
. . . . . . 7
⊢
(rank‘𝑦)
∈ On |
45 | | omcl 8012 |
. . . . . . 7
⊢ ((suc
∪ ran ∪ (𝐺 “ 𝐶) ∈ On ∧ (rank‘𝑦) ∈ On) → (suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On) |
46 | 43, 44, 45 | sylancl 586 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On) |
47 | | fveq2 6538 |
. . . . . . . . . . 11
⊢ (𝑧 = suc (rank‘𝑦) → (𝐺‘𝑧) = (𝐺‘suc (rank‘𝑦))) |
48 | | f1eq1 6438 |
. . . . . . . . . . 11
⊢ ((𝐺‘𝑧) = (𝐺‘suc (rank‘𝑦)) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On)) |
49 | 47, 48 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On)) |
50 | | fveq2 6538 |
. . . . . . . . . . 11
⊢ (𝑧 = suc (rank‘𝑦) →
(𝑅1‘𝑧) = (𝑅1‘suc
(rank‘𝑦))) |
51 | | f1eq2 6439 |
. . . . . . . . . . 11
⊢
((𝑅1‘𝑧) = (𝑅1‘suc
(rank‘𝑦)) →
((𝐺‘suc
(rank‘𝑦)):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
52 | 50, 51 | syl 17 |
. . . . . . . . . 10
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘suc (rank‘𝑦)):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
53 | 49, 52 | bitrd 280 |
. . . . . . . . 9
⊢ (𝑧 = suc (rank‘𝑦) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On)) |
54 | 11 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
55 | | rankr1ai 9073 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈
(𝑅1‘𝐶) → (rank‘𝑦) ∈ 𝐶) |
56 | 55 | ad2antlr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ 𝐶) |
57 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝐶 = ∪ 𝐶) |
58 | 56, 57 | eleqtrd 2885 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ ∪ 𝐶) |
59 | | eloni 6076 |
. . . . . . . . . . . . 13
⊢ (𝐶 ∈ On → Ord 𝐶) |
60 | 5, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → Ord 𝐶) |
61 | 60 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → Ord 𝐶) |
62 | | ordsucuniel 7395 |
. . . . . . . . . . 11
⊢ (Ord
𝐶 → ((rank‘𝑦) ∈ ∪ 𝐶
↔ suc (rank‘𝑦)
∈ 𝐶)) |
63 | 61, 62 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((rank‘𝑦) ∈ ∪ 𝐶
↔ suc (rank‘𝑦)
∈ 𝐶)) |
64 | 58, 63 | mpbid 233 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → suc (rank‘𝑦) ∈ 𝐶) |
65 | 53, 54, 64 | rspcdva 3565 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
66 | | f1f 6443 |
. . . . . . . 8
⊢ ((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))⟶On) |
67 | 65, 66 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))⟶On) |
68 | | r1elwf 9071 |
. . . . . . . . 9
⊢ (𝑦 ∈
(𝑅1‘𝐶) → 𝑦 ∈ ∪
(𝑅1 “ On)) |
69 | 68 | ad2antlr 723 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ ∪
(𝑅1 “ On)) |
70 | | rankidb 9075 |
. . . . . . . 8
⊢ (𝑦 ∈ ∪ (𝑅1 “ On) → 𝑦 ∈
(𝑅1‘suc (rank‘𝑦))) |
71 | 69, 70 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
72 | 67, 71 | ffvelrnd 6717 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ On) |
73 | | oacl 8011 |
. . . . . 6
⊢ (((suc
∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) ∈ On ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ On) → ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) ∈ On) |
74 | 46, 72, 73 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) ∈ On) |
75 | | dfac12.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On) |
76 | | f1f 6443 |
. . . . . . . 8
⊢ (𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
77 | 75, 76 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
78 | 77 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐹:𝒫
(har‘(𝑅1‘𝐴))⟶On) |
79 | | imassrn 5817 |
. . . . . . . 8
⊢ (𝐻 “ 𝑦) ⊆ ran 𝐻 |
80 | | fvex 6551 |
. . . . . . . . . . . . . . 15
⊢ (𝐺‘∪ 𝐶)
∈ V |
81 | 80 | rnex 7473 |
. . . . . . . . . . . . . 14
⊢ ran
(𝐺‘∪ 𝐶)
∈ V |
82 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∪
𝐶 → (𝐺‘𝑧) = (𝐺‘∪ 𝐶)) |
83 | | f1eq1 6438 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺‘𝑧) = (𝐺‘∪ 𝐶) → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On)) |
84 | 82, 83 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On)) |
85 | | fveq2 6538 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 = ∪
𝐶 →
(𝑅1‘𝑧) = (𝑅1‘∪ 𝐶)) |
86 | | f1eq2 6439 |
. . . . . . . . . . . . . . . . . . 19
⊢
((𝑅1‘𝑧) = (𝑅1‘∪ 𝐶)
→ ((𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
87 | 85, 86 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘∪ 𝐶):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
88 | 84, 87 | bitrd 280 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = ∪
𝐶 → ((𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On ↔ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On)) |
89 | 11 | ad2antrr 722 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∀𝑧 ∈ 𝐶 (𝐺‘𝑧):(𝑅1‘𝑧)–1-1→On) |
90 | 5 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 ∈ On) |
91 | | onuni 7364 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐶 ∈ On → ∪ 𝐶
∈ On) |
92 | | sucidg 6144 |
. . . . . . . . . . . . . . . . . . 19
⊢ (∪ 𝐶
∈ On → ∪ 𝐶 ∈ suc ∪
𝐶) |
93 | 90, 91, 92 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ suc ∪ 𝐶) |
94 | 60 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → Ord 𝐶) |
95 | | orduniorsuc 7401 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (Ord
𝐶 → (𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶)) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → (𝐶 = ∪ 𝐶 ∨ 𝐶 = suc ∪ 𝐶)) |
97 | 96 | orcanai 997 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 = suc ∪ 𝐶) |
98 | 93, 97 | eleqtrrd 2886 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ 𝐶) |
99 | 88, 89, 98 | rspcdva 3565 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On) |
100 | | f1f 6443 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)⟶On) |
101 | | frn 6388 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)⟶On → ran (𝐺‘∪ 𝐶) ⊆ On) |
102 | 99, 100, 101 | 3syl 18 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ⊆ On) |
103 | | epweon 7353 |
. . . . . . . . . . . . . . 15
⊢ E We
On |
104 | | wess 5430 |
. . . . . . . . . . . . . . 15
⊢ (ran
(𝐺‘∪ 𝐶)
⊆ On → ( E We On → E We ran (𝐺‘∪ 𝐶))) |
105 | 102, 103,
104 | mpisyl 21 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → E We ran (𝐺‘∪ 𝐶)) |
106 | | eqid 2795 |
. . . . . . . . . . . . . . 15
⊢ OrdIso( E
, ran (𝐺‘∪ 𝐶))
= OrdIso( E , ran (𝐺‘∪ 𝐶)) |
107 | 106 | oiiso 8847 |
. . . . . . . . . . . . . 14
⊢ ((ran
(𝐺‘∪ 𝐶)
∈ V ∧ E We ran (𝐺‘∪ 𝐶)) → OrdIso( E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶))) |
108 | 81, 105, 107 | sylancr 587 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → OrdIso( E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶))) |
109 | | isof1o 6939 |
. . . . . . . . . . . . 13
⊢ (OrdIso(
E , ran (𝐺‘∪ 𝐶))
Isom E , E (dom OrdIso( E , ran (𝐺‘∪ 𝐶)), ran (𝐺‘∪ 𝐶)) → OrdIso( E , ran (𝐺‘∪ 𝐶)):dom OrdIso( E , ran (𝐺‘∪ 𝐶))–1-1-onto→ran
(𝐺‘∪ 𝐶)) |
110 | | f1ocnv 6495 |
. . . . . . . . . . . . 13
⊢ (OrdIso(
E , ran (𝐺‘∪ 𝐶)):dom OrdIso( E , ran (𝐺‘∪ 𝐶))–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1-onto→dom
OrdIso( E , ran (𝐺‘∪ 𝐶))) |
111 | | f1of1 6482 |
. . . . . . . . . . . . 13
⊢ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1-onto→dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) → ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
112 | 108, 109,
110, 111 | 4syl 19 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
113 | | f1f1orn 6494 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→On → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)) |
114 | | f1of1 6482 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) |
115 | 99, 113, 114 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) |
116 | | f1co 6453 |
. . . . . . . . . . . 12
⊢ ((◡OrdIso( E , ran (𝐺‘∪ 𝐶)):ran (𝐺‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∧ (𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1→ran (𝐺‘∪ 𝐶)) → (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
117 | 112, 115,
116 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
118 | | dfac12.h |
. . . . . . . . . . . 12
⊢ 𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) |
119 | | f1eq1 6438 |
. . . . . . . . . . . 12
⊢ (𝐻 = (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)) → (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ↔ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)))) |
120 | 118, 119 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ↔ (◡OrdIso( E , ran (𝐺‘∪ 𝐶)) ∘ (𝐺‘∪ 𝐶)):(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
121 | 117, 120 | sylibr 235 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
122 | | f1f 6443 |
. . . . . . . . . 10
⊢ (𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) → 𝐻:(𝑅1‘∪ 𝐶)⟶dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
123 | | frn 6388 |
. . . . . . . . . 10
⊢ (𝐻:(𝑅1‘∪ 𝐶)⟶dom OrdIso( E , ran (𝐺‘∪ 𝐶))
→ ran 𝐻 ⊆ dom
OrdIso( E , ran (𝐺‘∪ 𝐶))) |
124 | 121, 122,
123 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran 𝐻 ⊆ dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
125 | | harcl 8871 |
. . . . . . . . . . 11
⊢
(har‘(𝑅1‘𝐴)) ∈ On |
126 | 125 | onordi 6170 |
. . . . . . . . . 10
⊢ Ord
(har‘(𝑅1‘𝐴)) |
127 | 106 | oion 8846 |
. . . . . . . . . . . 12
⊢ (ran
(𝐺‘∪ 𝐶)
∈ V → dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∈ On) |
128 | 81, 127 | mp1i 13 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
∈ On) |
129 | 106 | oien 8848 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝐺‘∪ 𝐶)
∈ V ∧ E We ran (𝐺‘∪ 𝐶)) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≈ ran (𝐺‘∪ 𝐶)) |
130 | 81, 105, 129 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≈ ran (𝐺‘∪ 𝐶)) |
131 | | fvex 6551 |
. . . . . . . . . . . . . . 15
⊢
(𝑅1‘∪ 𝐶) ∈ V |
132 | 131 | f1oen 8378 |
. . . . . . . . . . . . . 14
⊢ ((𝐺‘∪ 𝐶):(𝑅1‘∪ 𝐶)–1-1-onto→ran
(𝐺‘∪ 𝐶)
→ (𝑅1‘∪ 𝐶) ≈ ran (𝐺‘∪ 𝐶)) |
133 | | ensym 8406 |
. . . . . . . . . . . . . 14
⊢
((𝑅1‘∪ 𝐶) ≈ ran (𝐺‘∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≈
(𝑅1‘∪ 𝐶)) |
134 | 99, 113, 132, 133 | 4syl 19 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≈
(𝑅1‘∪ 𝐶)) |
135 | | fvex 6551 |
. . . . . . . . . . . . . 14
⊢
(𝑅1‘𝐴) ∈ V |
136 | | dfac12.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝐴 ∈ On) |
137 | 136 | ad2antrr 722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐴 ∈ On) |
138 | | dfac12.6 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
139 | 138 | ad2antrr 722 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → 𝐶 ⊆ 𝐴) |
140 | 139, 98 | sseldd 3890 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ∪ 𝐶
∈ 𝐴) |
141 | | r1ord2 9056 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ On → (∪ 𝐶
∈ 𝐴 →
(𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴))) |
142 | 137, 140,
141 | sylc 65 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴)) |
143 | | ssdomg 8403 |
. . . . . . . . . . . . . 14
⊢
((𝑅1‘𝐴) ∈ V →
((𝑅1‘∪ 𝐶) ⊆ (𝑅1‘𝐴) →
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴))) |
144 | 135, 142,
143 | mpsyl 68 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴)) |
145 | | endomtr 8415 |
. . . . . . . . . . . . 13
⊢ ((ran
(𝐺‘∪ 𝐶)
≈ (𝑅1‘∪ 𝐶) ∧
(𝑅1‘∪ 𝐶) ≼ (𝑅1‘𝐴)) → ran (𝐺‘∪ 𝐶) ≼
(𝑅1‘𝐴)) |
146 | 134, 144,
145 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran (𝐺‘∪ 𝐶) ≼
(𝑅1‘𝐴)) |
147 | | endomtr 8415 |
. . . . . . . . . . . 12
⊢ ((dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) ≈ ran (𝐺‘∪ 𝐶)
∧ ran (𝐺‘∪ 𝐶)
≼ (𝑅1‘𝐴)) → dom OrdIso( E , ran (𝐺‘∪ 𝐶))
≼ (𝑅1‘𝐴)) |
148 | 130, 146,
147 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
≼ (𝑅1‘𝐴)) |
149 | | elharval 8873 |
. . . . . . . . . . 11
⊢ (dom
OrdIso( E , ran (𝐺‘∪ 𝐶)) ∈
(har‘(𝑅1‘𝐴)) ↔ (dom OrdIso( E , ran (𝐺‘∪ 𝐶))
∈ On ∧ dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ≼
(𝑅1‘𝐴))) |
150 | 128, 148,
149 | sylanbrc 583 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
∈ (har‘(𝑅1‘𝐴))) |
151 | | ordelss 6082 |
. . . . . . . . . 10
⊢ ((Ord
(har‘(𝑅1‘𝐴)) ∧ dom OrdIso( E , ran (𝐺‘∪ 𝐶))
∈ (har‘(𝑅1‘𝐴))) → dom OrdIso( E , ran (𝐺‘∪ 𝐶))
⊆ (har‘(𝑅1‘𝐴))) |
152 | 126, 150,
151 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → dom OrdIso( E , ran
(𝐺‘∪ 𝐶))
⊆ (har‘(𝑅1‘𝐴))) |
153 | 124, 152 | sstrd 3899 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → ran 𝐻 ⊆
(har‘(𝑅1‘𝐴))) |
154 | 79, 153 | syl5ss 3900 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ⊆
(har‘(𝑅1‘𝐴))) |
155 | | fvex 6551 |
. . . . . . . 8
⊢
(har‘(𝑅1‘𝐴)) ∈ V |
156 | 155 | elpw2 5139 |
. . . . . . 7
⊢ ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ↔ (𝐻 “ 𝑦) ⊆
(har‘(𝑅1‘𝐴))) |
157 | 154, 156 | sylibr 235 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
158 | 78, 157 | ffvelrnd 6717 |
. . . . 5
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐹‘(𝐻 “ 𝑦)) ∈ On) |
159 | 74, 158 | ifclda 4415 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) → if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) ∈ On) |
160 | 159 | ex 413 |
. . 3
⊢ (𝜑 → (𝑦 ∈ (𝑅1‘𝐶) → if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) ∈ On)) |
161 | | iftrue 4387 |
. . . . . . . 8
⊢ (𝐶 = ∪
𝐶 → if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦))) |
162 | | iftrue 4387 |
. . . . . . . 8
⊢ (𝐶 = ∪
𝐶 → if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
163 | 161, 162 | eqeq12d 2810 |
. . . . . . 7
⊢ (𝐶 = ∪
𝐶 → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ ((suc ∪
ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
164 | 163 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ ((suc ∪
ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
165 | 42 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ∈ On) |
166 | | nsuceq0 6146 |
. . . . . . . 8
⊢ suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅ |
167 | 166 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅) |
168 | 44 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑦) ∈ On) |
169 | | onsucuni 7399 |
. . . . . . . . . . 11
⊢ (ran
∪ (𝐺 “ 𝐶) ⊆ On → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
170 | 38, 169 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
171 | 170 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ran ∪ (𝐺
“ 𝐶) ⊆ suc
∪ ran ∪ (𝐺 “ 𝐶)) |
172 | 26 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → 𝐶 ⊆ On) |
173 | | fnfvima 6860 |
. . . . . . . . . . . 12
⊢ ((𝐺 Fn On ∧ 𝐶 ⊆ On ∧ suc (rank‘𝑦) ∈ 𝐶) → (𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶)) |
174 | 2, 172, 64, 173 | mp3an2i 1458 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶)) |
175 | | elssuni 4774 |
. . . . . . . . . . 11
⊢ ((𝐺‘suc (rank‘𝑦)) ∈ (𝐺 “ 𝐶) → (𝐺‘suc (rank‘𝑦)) ⊆ ∪
(𝐺 “ 𝐶)) |
176 | | rnss 5691 |
. . . . . . . . . . 11
⊢ ((𝐺‘suc (rank‘𝑦)) ⊆ ∪ (𝐺
“ 𝐶) → ran
(𝐺‘suc
(rank‘𝑦)) ⊆ ran
∪ (𝐺 “ 𝐶)) |
177 | 174, 175,
176 | 3syl 18 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ran (𝐺‘suc (rank‘𝑦)) ⊆ ran ∪
(𝐺 “ 𝐶)) |
178 | | f1fn 6444 |
. . . . . . . . . . . 12
⊢ ((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On → (𝐺‘suc (rank‘𝑦)) Fn (𝑅1‘suc
(rank‘𝑦))) |
179 | 65, 178 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)) Fn (𝑅1‘suc
(rank‘𝑦))) |
180 | | fnfvelrn 6713 |
. . . . . . . . . . 11
⊢ (((𝐺‘suc (rank‘𝑦)) Fn
(𝑅1‘suc (rank‘𝑦)) ∧ 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) →
((𝐺‘suc
(rank‘𝑦))‘𝑦) ∈ ran (𝐺‘suc (rank‘𝑦))) |
181 | 179, 71, 180 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ ran (𝐺‘suc (rank‘𝑦))) |
182 | 177, 181 | sseldd 3890 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ ran ∪
(𝐺 “ 𝐶)) |
183 | 171, 182 | sseldd 3890 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
184 | 183 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
185 | | rankon 9070 |
. . . . . . . 8
⊢
(rank‘𝑧)
∈ On |
186 | 185 | a1i 11 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (rank‘𝑧) ∈ On) |
187 | | eleq1w 2865 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦 ∈ (𝑅1‘𝐶) ↔ 𝑧 ∈ (𝑅1‘𝐶))) |
188 | 187 | anbi2d 628 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ↔ (𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)))) |
189 | 188 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶))) |
190 | | fveq2 6538 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (rank‘𝑦) = (rank‘𝑧)) |
191 | | suceq 6131 |
. . . . . . . . . . . . . 14
⊢
((rank‘𝑦) =
(rank‘𝑧) → suc
(rank‘𝑦) = suc
(rank‘𝑧)) |
192 | 190, 191 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → suc (rank‘𝑦) = suc (rank‘𝑧)) |
193 | 192 | fveq2d 6542 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝐺‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑧))) |
194 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → 𝑦 = 𝑧) |
195 | 193, 194 | fveq12d 6545 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) |
196 | 195 | eleq1d 2867 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶) ↔ ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶))) |
197 | 189, 196 | imbi12d 346 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) ↔ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)))) |
198 | 197, 183 | chvarv 2370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
199 | 198 | adantlrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) |
200 | | omopth2 8060 |
. . . . . . 7
⊢ (((suc
∪ ran ∪ (𝐺 “ 𝐶) ∈ On ∧ suc ∪ ran ∪ (𝐺 “ 𝐶) ≠ ∅) ∧ ((rank‘𝑦) ∈ On ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶)) ∧ ((rank‘𝑧) ∈ On ∧ ((𝐺‘suc (rank‘𝑧))‘𝑧) ∈ suc ∪ ran
∪ (𝐺 “ 𝐶))) → (((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
201 | 165, 167,
168, 184, 186, 199, 200 | syl222anc 1379 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)) = ((suc ∪ ran
∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)))) |
202 | 191 | adantl 482 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → suc (rank‘𝑦) = suc (rank‘𝑧)) |
203 | 202 | fveq2d 6542 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (𝐺‘suc (rank‘𝑦)) = (𝐺‘suc (rank‘𝑧))) |
204 | 203 | fveq1d 6540 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → ((𝐺‘suc (rank‘𝑦))‘𝑧) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) |
205 | 204 | eqeq2d 2805 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
206 | 65 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
207 | 206 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On) |
208 | 71 | adantlrr 717 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
209 | 208 | adantr 481 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑦 ∈ (𝑅1‘suc
(rank‘𝑦))) |
210 | | r1elwf 9071 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈
(𝑅1‘𝐶) → 𝑧 ∈ ∪
(𝑅1 “ On)) |
211 | | rankidb 9075 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ ∪ (𝑅1 “ On) → 𝑧 ∈
(𝑅1‘suc (rank‘𝑧))) |
212 | 210, 211 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈
(𝑅1‘𝐶) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
213 | 212 | ad2antll 725 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
214 | 213 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑧))) |
215 | 202 | fveq2d 6542 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) →
(𝑅1‘suc (rank‘𝑦)) = (𝑅1‘suc
(rank‘𝑧))) |
216 | 214, 215 | eleqtrrd 2886 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → 𝑧 ∈ (𝑅1‘suc
(rank‘𝑦))) |
217 | | f1fveq 6885 |
. . . . . . . . . . 11
⊢ (((𝐺‘suc (rank‘𝑦)):(𝑅1‘suc
(rank‘𝑦))–1-1→On ∧ (𝑦 ∈ (𝑅1‘suc
(rank‘𝑦)) ∧ 𝑧 ∈
(𝑅1‘suc (rank‘𝑦)))) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ 𝑦 = 𝑧)) |
218 | 207, 209,
216, 217 | syl12anc 833 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑦))‘𝑧) ↔ 𝑦 = 𝑧)) |
219 | 205, 218 | bitr3d 282 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧) ↔ 𝑦 = 𝑧)) |
220 | 219 | biimpd 230 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) ∧ (rank‘𝑦) = (rank‘𝑧)) → (((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧) → 𝑦 = 𝑧)) |
221 | 220 | expimpd 454 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) → 𝑦 = 𝑧)) |
222 | 190, 195 | jca 512 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → ((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧))) |
223 | 221, 222 | impbid1 226 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (((rank‘𝑦) = (rank‘𝑧) ∧ ((𝐺‘suc (rank‘𝑦))‘𝑦) = ((𝐺‘suc (rank‘𝑧))‘𝑧)) ↔ 𝑦 = 𝑧)) |
224 | 164, 201,
223 | 3bitrd 306 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ 𝐶 = ∪ 𝐶) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
225 | | iffalse 4390 |
. . . . . . . 8
⊢ (¬
𝐶 = ∪ 𝐶
→ if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = (𝐹‘(𝐻 “ 𝑦))) |
226 | | iffalse 4390 |
. . . . . . . 8
⊢ (¬
𝐶 = ∪ 𝐶
→ if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) = (𝐹‘(𝐻 “ 𝑧))) |
227 | 225, 226 | eqeq12d 2810 |
. . . . . . 7
⊢ (¬
𝐶 = ∪ 𝐶
→ (if(𝐶 = ∪ 𝐶,
((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ (𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)))) |
228 | 227 | adantl 482 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ (𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)))) |
229 | 75 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On) |
230 | 157 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
231 | 188 | anbi1d 629 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) ↔ ((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶))) |
232 | | imaeq2 5802 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → (𝐻 “ 𝑦) = (𝐻 “ 𝑧)) |
233 | 232 | eleq1d 2867 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ↔ (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴)))) |
234 | 231, 233 | imbi12d 346 |
. . . . . . . . 9
⊢ (𝑦 = 𝑧 → ((((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴))) ↔ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))))) |
235 | 234, 157 | chvarv 2370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
236 | 235 | adantlrl 716 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴))) |
237 | | f1fveq 6885 |
. . . . . . 7
⊢ ((𝐹:𝒫
(har‘(𝑅1‘𝐴))–1-1→On ∧ ((𝐻 “ 𝑦) ∈ 𝒫
(har‘(𝑅1‘𝐴)) ∧ (𝐻 “ 𝑧) ∈ 𝒫
(har‘(𝑅1‘𝐴)))) → ((𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)) ↔ (𝐻 “ 𝑦) = (𝐻 “ 𝑧))) |
238 | 229, 230,
236, 237 | syl12anc 833 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → ((𝐹‘(𝐻 “ 𝑦)) = (𝐹‘(𝐻 “ 𝑧)) ↔ (𝐻 “ 𝑦) = (𝐻 “ 𝑧))) |
239 | 121 | adantlrr 717 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶))) |
240 | | simplrl 773 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ∈
(𝑅1‘𝐶)) |
241 | 97 | fveq2d 6542 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘𝐶) = (𝑅1‘suc ∪ 𝐶)) |
242 | | r1suc 9045 |
. . . . . . . . . . . 12
⊢ (∪ 𝐶
∈ On → (𝑅1‘suc ∪
𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
243 | 90, 91, 242 | 3syl 18 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘suc ∪ 𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
244 | 241, 243 | eqtrd 2831 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ (𝑅1‘𝐶)) ∧ ¬ 𝐶 = ∪ 𝐶) →
(𝑅1‘𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
245 | 244 | adantlrr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) →
(𝑅1‘𝐶) = 𝒫
(𝑅1‘∪ 𝐶)) |
246 | 240, 245 | eleqtrd 2885 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ∈ 𝒫
(𝑅1‘∪ 𝐶)) |
247 | 246 | elpwid 4465 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑦 ⊆
(𝑅1‘∪ 𝐶)) |
248 | | simplrr 774 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ∈
(𝑅1‘𝐶)) |
249 | 248, 245 | eleqtrd 2885 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ∈ 𝒫
(𝑅1‘∪ 𝐶)) |
250 | 249 | elpwid 4465 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → 𝑧 ⊆
(𝑅1‘∪ 𝐶)) |
251 | | f1imaeq 6888 |
. . . . . . 7
⊢ ((𝐻:(𝑅1‘∪ 𝐶)–1-1→dom OrdIso( E , ran (𝐺‘∪ 𝐶)) ∧ (𝑦 ⊆ (𝑅1‘∪ 𝐶)
∧ 𝑧 ⊆
(𝑅1‘∪ 𝐶))) → ((𝐻 “ 𝑦) = (𝐻 “ 𝑧) ↔ 𝑦 = 𝑧)) |
252 | 239, 247,
250, 251 | syl12anc 833 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → ((𝐻 “ 𝑦) = (𝐻 “ 𝑧) ↔ 𝑦 = 𝑧)) |
253 | 228, 238,
252 | 3bitrd 306 |
. . . . 5
⊢ (((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) ∧ ¬ 𝐶 = ∪
𝐶) → (if(𝐶 = ∪
𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
254 | 224, 253 | pm2.61dan 809 |
. . . 4
⊢ ((𝜑 ∧ (𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶))) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧)) |
255 | 254 | ex 413 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ (𝑅1‘𝐶) ∧ 𝑧 ∈ (𝑅1‘𝐶)) → (if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))) = if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑧)) +o ((𝐺‘suc (rank‘𝑧))‘𝑧)), (𝐹‘(𝐻 “ 𝑧))) ↔ 𝑦 = 𝑧))) |
256 | 160, 255 | dom2lem 8397 |
. 2
⊢ (𝜑 → (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On) |
257 | 136, 75, 1, 5, 118 | dfac12lem1 9415 |
. . 3
⊢ (𝜑 → (𝐺‘𝐶) = (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦))))) |
258 | | f1eq1 6438 |
. . 3
⊢ ((𝐺‘𝐶) = (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))) → ((𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On ↔ (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On)) |
259 | 257, 258 | syl 17 |
. 2
⊢ (𝜑 → ((𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On ↔ (𝑦 ∈ (𝑅1‘𝐶) ↦ if(𝐶 = ∪ 𝐶, ((suc ∪ ran ∪ (𝐺 “ 𝐶) ·o (rank‘𝑦)) +o ((𝐺‘suc (rank‘𝑦))‘𝑦)), (𝐹‘(𝐻 “ 𝑦)))):(𝑅1‘𝐶)–1-1→On)) |
260 | 256, 259 | mpbird 258 |
1
⊢ (𝜑 → (𝐺‘𝐶):(𝑅1‘𝐶)–1-1→On) |