Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub Structured version   Visualization version   GIF version

Theorem cantnfub 43317
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴𝑛) is less than 𝑋 and (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.)
Hypotheses
Ref Expression
cantnfub.0 (𝜑𝑋 ∈ On)
cantnfub.n (𝜑𝑁 ∈ ω)
cantnfub.a (𝜑𝐴:𝑁1-1𝑋)
cantnfub.m (𝜑𝑀:𝑁⟶ω)
cantnfub.f 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cantnfub.m . . . . . . 7 (𝜑𝑀:𝑁⟶ω)
21ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝑀:𝑁⟶ω)
3 cantnfub.a . . . . . . . . 9 (𝜑𝐴:𝑁1-1𝑋)
43ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1𝑋)
5 f1f1orn 6814 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴:𝑁1-1-onto→ran 𝐴)
64, 5syl 17 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1-onto→ran 𝐴)
7 f1ocnvdm 7263 . . . . . . 7 ((𝐴:𝑁1-1-onto→ran 𝐴𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
86, 7sylancom 588 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
92, 8ffvelcdmd 7060 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝑀‘(𝐴𝑥)) ∈ ω)
10 peano1 7868 . . . . . 6 ∅ ∈ ω
1110a1i 11 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ 𝑥 ∈ ran 𝐴) → ∅ ∈ ω)
129, 11ifclda 4527 . . . 4 ((𝜑𝑥𝑋) → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) ∈ ω)
13 cantnfub.f . . . 4 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
1412, 13fmptd 7089 . . 3 (𝜑𝐹:𝑋⟶ω)
15 f1fn 6760 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴 Fn 𝑁)
163, 15syl 17 . . . . . . 7 (𝜑𝐴 Fn 𝑁)
17 cantnfub.n . . . . . . . 8 (𝜑𝑁 ∈ ω)
18 nnon 7851 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ On)
19 onfin 9185 . . . . . . . . 9 (𝑁 ∈ On → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2017, 18, 193syl 18 . . . . . . . 8 (𝜑 → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2117, 20mpbird 257 . . . . . . 7 (𝜑𝑁 ∈ Fin)
2216, 21jca 511 . . . . . 6 (𝜑 → (𝐴 Fn 𝑁𝑁 ∈ Fin))
23 fnfi 9148 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
24 rnfi 9298 . . . . . 6 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
2522, 23, 243syl 18 . . . . 5 (𝜑 → ran 𝐴 ∈ Fin)
26 eldifi 4097 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → 𝑦𝑋)
2726adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → 𝑦𝑋)
28 eleq1w 2812 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
29 2fveq3 6866 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑀‘(𝐴𝑥)) = (𝑀‘(𝐴𝑦)))
3028, 29ifbieq1d 4516 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
31 fvex 6874 . . . . . . . . . 10 (𝑀‘(𝐴𝑦)) ∈ V
32 0ex 5265 . . . . . . . . . 10 ∅ ∈ V
3331, 32ifex 4542 . . . . . . . . 9 if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) ∈ V
3430, 13, 33fvmpt 6971 . . . . . . . 8 (𝑦𝑋 → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
3527, 34syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
36 eldifn 4098 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → ¬ 𝑦 ∈ ran 𝐴)
3736adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → ¬ 𝑦 ∈ ran 𝐴)
3837iffalsed 4502 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) = ∅)
3935, 38eqtrd 2765 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = ∅)
4014, 39suppss 8176 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ ran 𝐴)
4125, 40ssfid 9219 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4214ffund 6695 . . . . 5 (𝜑 → Fun 𝐹)
43 omelon 9606 . . . . . . . 8 ω ∈ On
4443a1i 11 . . . . . . 7 (𝜑 → ω ∈ On)
45 cantnfub.0 . . . . . . 7 (𝜑𝑋 ∈ On)
4644, 45elmapd 8816 . . . . . 6 (𝜑 → (𝐹 ∈ (ω ↑m 𝑋) ↔ 𝐹:𝑋⟶ω))
4714, 46mpbird 257 . . . . 5 (𝜑𝐹 ∈ (ω ↑m 𝑋))
4810a1i 11 . . . . 5 (𝜑 → ∅ ∈ ω)
49 funisfsupp 9325 . . . . 5 ((Fun 𝐹𝐹 ∈ (ω ↑m 𝑋) ∧ ∅ ∈ ω) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5042, 47, 48, 49syl3anc 1373 . . . 4 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5141, 50mpbird 257 . . 3 (𝜑𝐹 finSupp ∅)
52 eqid 2730 . . . 4 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
5352, 44, 45cantnfs 9626 . . 3 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
5414, 51, 53mpbir2and 713 . 2 (𝜑𝐹 ∈ dom (ω CNF 𝑋))
5552, 44, 45cantnff 9634 . . 3 (𝜑 → (ω CNF 𝑋):dom (ω CNF 𝑋)⟶(ω ↑o 𝑋))
5655, 54ffvelcdmd 7060 . 2 (𝜑 → ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))
5754, 56jca 511 1 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3914  c0 4299  ifcif 4491   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  Oncon0 6335  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  ωcom 7845   supp csupp 8142  o coe 8436  m cmap 8802  Fincfn 8921   finSupp cfsupp 9319   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-cnf 9622
This theorem is referenced by:  cantnfub2  43318
  Copyright terms: Public domain W3C validator