Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub Structured version   Visualization version   GIF version

Theorem cantnfub 43310
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴𝑛) is less than 𝑋 and (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.)
Hypotheses
Ref Expression
cantnfub.0 (𝜑𝑋 ∈ On)
cantnfub.n (𝜑𝑁 ∈ ω)
cantnfub.a (𝜑𝐴:𝑁1-1𝑋)
cantnfub.m (𝜑𝑀:𝑁⟶ω)
cantnfub.f 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cantnfub.m . . . . . . 7 (𝜑𝑀:𝑁⟶ω)
21ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝑀:𝑁⟶ω)
3 cantnfub.a . . . . . . . . 9 (𝜑𝐴:𝑁1-1𝑋)
43ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1𝑋)
5 f1f1orn 6811 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴:𝑁1-1-onto→ran 𝐴)
64, 5syl 17 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1-onto→ran 𝐴)
7 f1ocnvdm 7260 . . . . . . 7 ((𝐴:𝑁1-1-onto→ran 𝐴𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
86, 7sylancom 588 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
92, 8ffvelcdmd 7057 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝑀‘(𝐴𝑥)) ∈ ω)
10 peano1 7865 . . . . . 6 ∅ ∈ ω
1110a1i 11 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ 𝑥 ∈ ran 𝐴) → ∅ ∈ ω)
129, 11ifclda 4524 . . . 4 ((𝜑𝑥𝑋) → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) ∈ ω)
13 cantnfub.f . . . 4 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
1412, 13fmptd 7086 . . 3 (𝜑𝐹:𝑋⟶ω)
15 f1fn 6757 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴 Fn 𝑁)
163, 15syl 17 . . . . . . 7 (𝜑𝐴 Fn 𝑁)
17 cantnfub.n . . . . . . . 8 (𝜑𝑁 ∈ ω)
18 nnon 7848 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ On)
19 onfin 9179 . . . . . . . . 9 (𝑁 ∈ On → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2017, 18, 193syl 18 . . . . . . . 8 (𝜑 → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2117, 20mpbird 257 . . . . . . 7 (𝜑𝑁 ∈ Fin)
2216, 21jca 511 . . . . . 6 (𝜑 → (𝐴 Fn 𝑁𝑁 ∈ Fin))
23 fnfi 9142 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
24 rnfi 9291 . . . . . 6 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
2522, 23, 243syl 18 . . . . 5 (𝜑 → ran 𝐴 ∈ Fin)
26 eldifi 4094 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → 𝑦𝑋)
2726adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → 𝑦𝑋)
28 eleq1w 2811 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
29 2fveq3 6863 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑀‘(𝐴𝑥)) = (𝑀‘(𝐴𝑦)))
3028, 29ifbieq1d 4513 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
31 fvex 6871 . . . . . . . . . 10 (𝑀‘(𝐴𝑦)) ∈ V
32 0ex 5262 . . . . . . . . . 10 ∅ ∈ V
3331, 32ifex 4539 . . . . . . . . 9 if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) ∈ V
3430, 13, 33fvmpt 6968 . . . . . . . 8 (𝑦𝑋 → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
3527, 34syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
36 eldifn 4095 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → ¬ 𝑦 ∈ ran 𝐴)
3736adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → ¬ 𝑦 ∈ ran 𝐴)
3837iffalsed 4499 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) = ∅)
3935, 38eqtrd 2764 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = ∅)
4014, 39suppss 8173 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ ran 𝐴)
4125, 40ssfid 9212 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4214ffund 6692 . . . . 5 (𝜑 → Fun 𝐹)
43 omelon 9599 . . . . . . . 8 ω ∈ On
4443a1i 11 . . . . . . 7 (𝜑 → ω ∈ On)
45 cantnfub.0 . . . . . . 7 (𝜑𝑋 ∈ On)
4644, 45elmapd 8813 . . . . . 6 (𝜑 → (𝐹 ∈ (ω ↑m 𝑋) ↔ 𝐹:𝑋⟶ω))
4714, 46mpbird 257 . . . . 5 (𝜑𝐹 ∈ (ω ↑m 𝑋))
4810a1i 11 . . . . 5 (𝜑 → ∅ ∈ ω)
49 funisfsupp 9318 . . . . 5 ((Fun 𝐹𝐹 ∈ (ω ↑m 𝑋) ∧ ∅ ∈ ω) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5042, 47, 48, 49syl3anc 1373 . . . 4 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5141, 50mpbird 257 . . 3 (𝜑𝐹 finSupp ∅)
52 eqid 2729 . . . 4 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
5352, 44, 45cantnfs 9619 . . 3 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
5414, 51, 53mpbir2and 713 . 2 (𝜑𝐹 ∈ dom (ω CNF 𝑋))
5552, 44, 45cantnff 9627 . . 3 (𝜑 → (ω CNF 𝑋):dom (ω CNF 𝑋)⟶(ω ↑o 𝑋))
5655, 54ffvelcdmd 7057 . 2 (𝜑 → ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))
5754, 56jca 511 1 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cdif 3911  c0 4296  ifcif 4488   class class class wbr 5107  cmpt 5188  ccnv 5637  dom cdm 5638  ran crn 5639  Oncon0 6332  Fun wfun 6505   Fn wfn 6506  wf 6507  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  ωcom 7842   supp csupp 8139  o coe 8433  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312   CNF ccnf 9614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seqom 8416  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-oexp 8440  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-oi 9463  df-cnf 9615
This theorem is referenced by:  cantnfub2  43311
  Copyright terms: Public domain W3C validator