Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub Structured version   Visualization version   GIF version

Theorem cantnfub 43424
Description: Given a finite number of terms of the form ((ω ↑o (𝐴𝑛)) ·o (𝑀𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴𝑛) is less than 𝑋 and (𝑀𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.)
Hypotheses
Ref Expression
cantnfub.0 (𝜑𝑋 ∈ On)
cantnfub.n (𝜑𝑁 ∈ ω)
cantnfub.a (𝜑𝐴:𝑁1-1𝑋)
cantnfub.m (𝜑𝑀:𝑁⟶ω)
cantnfub.f 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
Assertion
Ref Expression
cantnfub (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝑀   𝑥,𝑋
Allowed substitution hints:   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem cantnfub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cantnfub.m . . . . . . 7 (𝜑𝑀:𝑁⟶ω)
21ad2antrr 726 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝑀:𝑁⟶ω)
3 cantnfub.a . . . . . . . . 9 (𝜑𝐴:𝑁1-1𝑋)
43ad2antrr 726 . . . . . . . 8 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1𝑋)
5 f1f1orn 6774 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴:𝑁1-1-onto→ran 𝐴)
64, 5syl 17 . . . . . . 7 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → 𝐴:𝑁1-1-onto→ran 𝐴)
7 f1ocnvdm 7219 . . . . . . 7 ((𝐴:𝑁1-1-onto→ran 𝐴𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
86, 7sylancom 588 . . . . . 6 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝐴𝑥) ∈ 𝑁)
92, 8ffvelcdmd 7018 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑥 ∈ ran 𝐴) → (𝑀‘(𝐴𝑥)) ∈ ω)
10 peano1 7819 . . . . . 6 ∅ ∈ ω
1110a1i 11 . . . . 5 (((𝜑𝑥𝑋) ∧ ¬ 𝑥 ∈ ran 𝐴) → ∅ ∈ ω)
129, 11ifclda 4508 . . . 4 ((𝜑𝑥𝑋) → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) ∈ ω)
13 cantnfub.f . . . 4 𝐹 = (𝑥𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅))
1412, 13fmptd 7047 . . 3 (𝜑𝐹:𝑋⟶ω)
15 f1fn 6720 . . . . . . . 8 (𝐴:𝑁1-1𝑋𝐴 Fn 𝑁)
163, 15syl 17 . . . . . . 7 (𝜑𝐴 Fn 𝑁)
17 cantnfub.n . . . . . . . 8 (𝜑𝑁 ∈ ω)
18 nnon 7802 . . . . . . . . 9 (𝑁 ∈ ω → 𝑁 ∈ On)
19 onfin 9124 . . . . . . . . 9 (𝑁 ∈ On → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2017, 18, 193syl 18 . . . . . . . 8 (𝜑 → (𝑁 ∈ Fin ↔ 𝑁 ∈ ω))
2117, 20mpbird 257 . . . . . . 7 (𝜑𝑁 ∈ Fin)
2216, 21jca 511 . . . . . 6 (𝜑 → (𝐴 Fn 𝑁𝑁 ∈ Fin))
23 fnfi 9087 . . . . . 6 ((𝐴 Fn 𝑁𝑁 ∈ Fin) → 𝐴 ∈ Fin)
24 rnfi 9224 . . . . . 6 (𝐴 ∈ Fin → ran 𝐴 ∈ Fin)
2522, 23, 243syl 18 . . . . 5 (𝜑 → ran 𝐴 ∈ Fin)
26 eldifi 4078 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → 𝑦𝑋)
2726adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → 𝑦𝑋)
28 eleq1w 2814 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ∈ ran 𝐴𝑦 ∈ ran 𝐴))
29 2fveq3 6827 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑀‘(𝐴𝑥)) = (𝑀‘(𝐴𝑦)))
3028, 29ifbieq1d 4497 . . . . . . . . 9 (𝑥 = 𝑦 → if(𝑥 ∈ ran 𝐴, (𝑀‘(𝐴𝑥)), ∅) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
31 fvex 6835 . . . . . . . . . 10 (𝑀‘(𝐴𝑦)) ∈ V
32 0ex 5243 . . . . . . . . . 10 ∅ ∈ V
3331, 32ifex 4523 . . . . . . . . 9 if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) ∈ V
3430, 13, 33fvmpt 6929 . . . . . . . 8 (𝑦𝑋 → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
3527, 34syl 17 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅))
36 eldifn 4079 . . . . . . . . 9 (𝑦 ∈ (𝑋 ∖ ran 𝐴) → ¬ 𝑦 ∈ ran 𝐴)
3736adantl 481 . . . . . . . 8 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → ¬ 𝑦 ∈ ran 𝐴)
3837iffalsed 4483 . . . . . . 7 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → if(𝑦 ∈ ran 𝐴, (𝑀‘(𝐴𝑦)), ∅) = ∅)
3935, 38eqtrd 2766 . . . . . 6 ((𝜑𝑦 ∈ (𝑋 ∖ ran 𝐴)) → (𝐹𝑦) = ∅)
4014, 39suppss 8124 . . . . 5 (𝜑 → (𝐹 supp ∅) ⊆ ran 𝐴)
4125, 40ssfid 9153 . . . 4 (𝜑 → (𝐹 supp ∅) ∈ Fin)
4214ffund 6655 . . . . 5 (𝜑 → Fun 𝐹)
43 omelon 9536 . . . . . . . 8 ω ∈ On
4443a1i 11 . . . . . . 7 (𝜑 → ω ∈ On)
45 cantnfub.0 . . . . . . 7 (𝜑𝑋 ∈ On)
4644, 45elmapd 8764 . . . . . 6 (𝜑 → (𝐹 ∈ (ω ↑m 𝑋) ↔ 𝐹:𝑋⟶ω))
4714, 46mpbird 257 . . . . 5 (𝜑𝐹 ∈ (ω ↑m 𝑋))
4810a1i 11 . . . . 5 (𝜑 → ∅ ∈ ω)
49 funisfsupp 9251 . . . . 5 ((Fun 𝐹𝐹 ∈ (ω ↑m 𝑋) ∧ ∅ ∈ ω) → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5042, 47, 48, 49syl3anc 1373 . . . 4 (𝜑 → (𝐹 finSupp ∅ ↔ (𝐹 supp ∅) ∈ Fin))
5141, 50mpbird 257 . . 3 (𝜑𝐹 finSupp ∅)
52 eqid 2731 . . . 4 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
5352, 44, 45cantnfs 9556 . . 3 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
5414, 51, 53mpbir2and 713 . 2 (𝜑𝐹 ∈ dom (ω CNF 𝑋))
5552, 44, 45cantnff 9564 . . 3 (𝜑 → (ω CNF 𝑋):dom (ω CNF 𝑋)⟶(ω ↑o 𝑋))
5655, 54ffvelcdmd 7018 . 2 (𝜑 → ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))
5754, 56jca 511 1 (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  cdif 3894  c0 4280  ifcif 4472   class class class wbr 5089  cmpt 5170  ccnv 5613  dom cdm 5614  ran crn 5615  Oncon0 6306  Fun wfun 6475   Fn wfn 6476  wf 6477  1-1wf1 6478  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  ωcom 7796   supp csupp 8090  o coe 8384  m cmap 8750  Fincfn 8869   finSupp cfsupp 9245   CNF ccnf 9551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-seqom 8367  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-oexp 8391  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-oi 9396  df-cnf 9552
This theorem is referenced by:  cantnfub2  43425
  Copyright terms: Public domain W3C validator