Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cantnfub Structured version   Visualization version   GIF version

Theorem cantnfub 42004
Description: Given a finite number of terms of the form ((Ο‰ ↑o (π΄β€˜π‘›)) Β·o (π‘€β€˜π‘›)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (Ο‰ ↑o 𝑋) when (π΄β€˜π‘›) is less than 𝑋 and (π‘€β€˜π‘›) is less than Ο‰. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.)
Hypotheses
Ref Expression
cantnfub.0 (πœ‘ β†’ 𝑋 ∈ On)
cantnfub.n (πœ‘ β†’ 𝑁 ∈ Ο‰)
cantnfub.a (πœ‘ β†’ 𝐴:𝑁–1-1→𝑋)
cantnfub.m (πœ‘ β†’ 𝑀:π‘βŸΆΟ‰)
cantnfub.f 𝐹 = (π‘₯ ∈ 𝑋 ↦ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…))
Assertion
Ref Expression
cantnfub (πœ‘ β†’ (𝐹 ∈ dom (Ο‰ CNF 𝑋) ∧ ((Ο‰ CNF 𝑋)β€˜πΉ) ∈ (Ο‰ ↑o 𝑋)))
Distinct variable groups:   πœ‘,π‘₯   π‘₯,𝐴   π‘₯,𝑀   π‘₯,𝑋
Allowed substitution hints:   𝐹(π‘₯)   𝑁(π‘₯)

Proof of Theorem cantnfub
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cantnfub.m . . . . . . 7 (πœ‘ β†’ 𝑀:π‘βŸΆΟ‰)
21ad2antrr 725 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ π‘₯ ∈ ran 𝐴) β†’ 𝑀:π‘βŸΆΟ‰)
3 cantnfub.a . . . . . . . . 9 (πœ‘ β†’ 𝐴:𝑁–1-1→𝑋)
43ad2antrr 725 . . . . . . . 8 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ π‘₯ ∈ ran 𝐴) β†’ 𝐴:𝑁–1-1→𝑋)
5 f1f1orn 6841 . . . . . . . 8 (𝐴:𝑁–1-1→𝑋 β†’ 𝐴:𝑁–1-1-ontoβ†’ran 𝐴)
64, 5syl 17 . . . . . . 7 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ π‘₯ ∈ ran 𝐴) β†’ 𝐴:𝑁–1-1-ontoβ†’ran 𝐴)
7 f1ocnvdm 7278 . . . . . . 7 ((𝐴:𝑁–1-1-ontoβ†’ran 𝐴 ∧ π‘₯ ∈ ran 𝐴) β†’ (β—‘π΄β€˜π‘₯) ∈ 𝑁)
86, 7sylancom 589 . . . . . 6 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ π‘₯ ∈ ran 𝐴) β†’ (β—‘π΄β€˜π‘₯) ∈ 𝑁)
92, 8ffvelcdmd 7083 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ π‘₯ ∈ ran 𝐴) β†’ (π‘€β€˜(β—‘π΄β€˜π‘₯)) ∈ Ο‰)
10 peano1 7874 . . . . . 6 βˆ… ∈ Ο‰
1110a1i 11 . . . . 5 (((πœ‘ ∧ π‘₯ ∈ 𝑋) ∧ Β¬ π‘₯ ∈ ran 𝐴) β†’ βˆ… ∈ Ο‰)
129, 11ifclda 4562 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…) ∈ Ο‰)
13 cantnfub.f . . . 4 𝐹 = (π‘₯ ∈ 𝑋 ↦ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…))
1412, 13fmptd 7109 . . 3 (πœ‘ β†’ 𝐹:π‘‹βŸΆΟ‰)
15 f1fn 6785 . . . . . . . 8 (𝐴:𝑁–1-1→𝑋 β†’ 𝐴 Fn 𝑁)
163, 15syl 17 . . . . . . 7 (πœ‘ β†’ 𝐴 Fn 𝑁)
17 cantnfub.n . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ Ο‰)
18 nnon 7856 . . . . . . . . 9 (𝑁 ∈ Ο‰ β†’ 𝑁 ∈ On)
19 onfin 9226 . . . . . . . . 9 (𝑁 ∈ On β†’ (𝑁 ∈ Fin ↔ 𝑁 ∈ Ο‰))
2017, 18, 193syl 18 . . . . . . . 8 (πœ‘ β†’ (𝑁 ∈ Fin ↔ 𝑁 ∈ Ο‰))
2117, 20mpbird 257 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ Fin)
2216, 21jca 513 . . . . . 6 (πœ‘ β†’ (𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin))
23 fnfi 9177 . . . . . 6 ((𝐴 Fn 𝑁 ∧ 𝑁 ∈ Fin) β†’ 𝐴 ∈ Fin)
24 rnfi 9331 . . . . . 6 (𝐴 ∈ Fin β†’ ran 𝐴 ∈ Fin)
2522, 23, 243syl 18 . . . . 5 (πœ‘ β†’ ran 𝐴 ∈ Fin)
26 eldifi 4125 . . . . . . . . 9 (𝑦 ∈ (𝑋 βˆ– ran 𝐴) β†’ 𝑦 ∈ 𝑋)
2726adantl 483 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ (𝑋 βˆ– ran 𝐴)) β†’ 𝑦 ∈ 𝑋)
28 eleq1w 2817 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ (π‘₯ ∈ ran 𝐴 ↔ 𝑦 ∈ ran 𝐴))
29 2fveq3 6893 . . . . . . . . . 10 (π‘₯ = 𝑦 β†’ (π‘€β€˜(β—‘π΄β€˜π‘₯)) = (π‘€β€˜(β—‘π΄β€˜π‘¦)))
3028, 29ifbieq1d 4551 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ if(π‘₯ ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘₯)), βˆ…) = if(𝑦 ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘¦)), βˆ…))
31 fvex 6901 . . . . . . . . . 10 (π‘€β€˜(β—‘π΄β€˜π‘¦)) ∈ V
32 0ex 5306 . . . . . . . . . 10 βˆ… ∈ V
3331, 32ifex 4577 . . . . . . . . 9 if(𝑦 ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘¦)), βˆ…) ∈ V
3430, 13, 33fvmpt 6994 . . . . . . . 8 (𝑦 ∈ 𝑋 β†’ (πΉβ€˜π‘¦) = if(𝑦 ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘¦)), βˆ…))
3527, 34syl 17 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ (𝑋 βˆ– ran 𝐴)) β†’ (πΉβ€˜π‘¦) = if(𝑦 ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘¦)), βˆ…))
36 eldifn 4126 . . . . . . . . 9 (𝑦 ∈ (𝑋 βˆ– ran 𝐴) β†’ Β¬ 𝑦 ∈ ran 𝐴)
3736adantl 483 . . . . . . . 8 ((πœ‘ ∧ 𝑦 ∈ (𝑋 βˆ– ran 𝐴)) β†’ Β¬ 𝑦 ∈ ran 𝐴)
3837iffalsed 4538 . . . . . . 7 ((πœ‘ ∧ 𝑦 ∈ (𝑋 βˆ– ran 𝐴)) β†’ if(𝑦 ∈ ran 𝐴, (π‘€β€˜(β—‘π΄β€˜π‘¦)), βˆ…) = βˆ…)
3935, 38eqtrd 2773 . . . . . 6 ((πœ‘ ∧ 𝑦 ∈ (𝑋 βˆ– ran 𝐴)) β†’ (πΉβ€˜π‘¦) = βˆ…)
4014, 39suppss 8174 . . . . 5 (πœ‘ β†’ (𝐹 supp βˆ…) βŠ† ran 𝐴)
4125, 40ssfid 9263 . . . 4 (πœ‘ β†’ (𝐹 supp βˆ…) ∈ Fin)
4214ffund 6718 . . . . 5 (πœ‘ β†’ Fun 𝐹)
43 omelon 9637 . . . . . . . 8 Ο‰ ∈ On
4443a1i 11 . . . . . . 7 (πœ‘ β†’ Ο‰ ∈ On)
45 cantnfub.0 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ On)
4644, 45elmapd 8830 . . . . . 6 (πœ‘ β†’ (𝐹 ∈ (Ο‰ ↑m 𝑋) ↔ 𝐹:π‘‹βŸΆΟ‰))
4714, 46mpbird 257 . . . . 5 (πœ‘ β†’ 𝐹 ∈ (Ο‰ ↑m 𝑋))
4810a1i 11 . . . . 5 (πœ‘ β†’ βˆ… ∈ Ο‰)
49 funisfsupp 9363 . . . . 5 ((Fun 𝐹 ∧ 𝐹 ∈ (Ο‰ ↑m 𝑋) ∧ βˆ… ∈ Ο‰) β†’ (𝐹 finSupp βˆ… ↔ (𝐹 supp βˆ…) ∈ Fin))
5042, 47, 48, 49syl3anc 1372 . . . 4 (πœ‘ β†’ (𝐹 finSupp βˆ… ↔ (𝐹 supp βˆ…) ∈ Fin))
5141, 50mpbird 257 . . 3 (πœ‘ β†’ 𝐹 finSupp βˆ…)
52 eqid 2733 . . . 4 dom (Ο‰ CNF 𝑋) = dom (Ο‰ CNF 𝑋)
5352, 44, 45cantnfs 9657 . . 3 (πœ‘ β†’ (𝐹 ∈ dom (Ο‰ CNF 𝑋) ↔ (𝐹:π‘‹βŸΆΟ‰ ∧ 𝐹 finSupp βˆ…)))
5414, 51, 53mpbir2and 712 . 2 (πœ‘ β†’ 𝐹 ∈ dom (Ο‰ CNF 𝑋))
5552, 44, 45cantnff 9665 . . 3 (πœ‘ β†’ (Ο‰ CNF 𝑋):dom (Ο‰ CNF 𝑋)⟢(Ο‰ ↑o 𝑋))
5655, 54ffvelcdmd 7083 . 2 (πœ‘ β†’ ((Ο‰ CNF 𝑋)β€˜πΉ) ∈ (Ο‰ ↑o 𝑋))
5754, 56jca 513 1 (πœ‘ β†’ (𝐹 ∈ dom (Ο‰ CNF 𝑋) ∧ ((Ο‰ CNF 𝑋)β€˜πΉ) ∈ (Ο‰ ↑o 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107   βˆ– cdif 3944  βˆ…c0 4321  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  β—‘ccnv 5674  dom cdm 5675  ran crn 5676  Oncon0 6361  Fun wfun 6534   Fn wfn 6535  βŸΆwf 6536  β€“1-1β†’wf1 6537  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7404  Ο‰com 7850   supp csupp 8141   ↑o coe 8460   ↑m cmap 8816  Fincfn 8935   finSupp cfsupp 9357   CNF ccnf 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-seqom 8443  df-1o 8461  df-2o 8462  df-oadd 8465  df-omul 8466  df-oexp 8467  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-cnf 9653
This theorem is referenced by:  cantnfub2  42005
  Copyright terms: Public domain W3C validator