Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlklem2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlklem2 27889
 Description: Lemma 2 for clwlkclwwlk 27891. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 11-Apr-2021.)
Assertion
Ref Expression
clwlkclwwlklem2 (((𝐸:dom 𝐸1-1𝑅𝐹 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))
Distinct variable groups:   𝑖,𝐸   𝑃,𝑖   𝑅,𝑖   𝑖,𝑉   𝑖,𝐹

Proof of Theorem clwlkclwwlklem2
StepHypRef Expression
1 f1fn 6565 . . . 4 (𝐸:dom 𝐸1-1𝑅𝐸 Fn dom 𝐸)
2 dffn3 6514 . . . 4 (𝐸 Fn dom 𝐸𝐸:dom 𝐸⟶ran 𝐸)
31, 2sylib 221 . . 3 (𝐸:dom 𝐸1-1𝑅𝐸:dom 𝐸⟶ran 𝐸)
4 lencl 13937 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐸 → (♯‘𝐹) ∈ ℕ0)
5 ffn 6502 . . . . . . . . 9 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 Fn (0...(♯‘𝐹)))
6 fnfz0hash 13859 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0𝑃 Fn (0...(♯‘𝐹))) → (♯‘𝑃) = ((♯‘𝐹) + 1))
74, 5, 6syl2an 598 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉) → (♯‘𝑃) = ((♯‘𝐹) + 1))
8 ffz0iswrd 13945 . . . . . . . . . . . 12 (𝑃:(0...(♯‘𝐹))⟶𝑉𝑃 ∈ Word 𝑉)
9 lsw 13968 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Word 𝑉 → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
109ad6antr 735 . . . . . . . . . . . . . . . 16 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → (lastS‘𝑃) = (𝑃‘((♯‘𝑃) − 1)))
11 fvoveq1 7178 . . . . . . . . . . . . . . . . 17 ((♯‘𝑃) = ((♯‘𝐹) + 1) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝐹) + 1) − 1)))
1211ad4antlr 732 . . . . . . . . . . . . . . . 16 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → (𝑃‘((♯‘𝑃) − 1)) = (𝑃‘(((♯‘𝐹) + 1) − 1)))
13 eqcom 2765 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) ↔ (𝑃‘(♯‘𝐹)) = (𝑃‘0))
14 nn0cn 11949 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℂ)
15 1cnd 10679 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℂ)
1614, 15pncand 11041 . . . . . . . . . . . . . . . . . . . . . . 23 ((♯‘𝐹) ∈ ℕ0 → (((♯‘𝐹) + 1) − 1) = (♯‘𝐹))
1716eqcomd 2764 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) = (((♯‘𝐹) + 1) − 1))
1817ad4antlr 732 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (♯‘𝐹) = (((♯‘𝐹) + 1) − 1))
1918fveqeq2d 6670 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) ↔ (𝑃‘(((♯‘𝐹) + 1) − 1)) = (𝑃‘0)))
2019biimpd 232 . . . . . . . . . . . . . . . . . . 19 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝑃‘(♯‘𝐹)) = (𝑃‘0) → (𝑃‘(((♯‘𝐹) + 1) − 1)) = (𝑃‘0)))
2113, 20syl5bi 245 . . . . . . . . . . . . . . . . . 18 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → (𝑃‘(((♯‘𝐹) + 1) − 1)) = (𝑃‘0)))
2221adantld 494 . . . . . . . . . . . . . . . . 17 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → (𝑃‘(((♯‘𝐹) + 1) − 1)) = (𝑃‘0)))
2322imp 410 . . . . . . . . . . . . . . . 16 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → (𝑃‘(((♯‘𝐹) + 1) − 1)) = (𝑃‘0))
2410, 12, 233eqtrd 2797 . . . . . . . . . . . . . . 15 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → (lastS‘𝑃) = (𝑃‘0))
25 nn0z 12049 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ)
26 peano2zm 12069 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℤ → ((♯‘𝐹) − 1) ∈ ℤ)
2725, 26syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) − 1) ∈ ℤ)
28 nn0re 11948 . . . . . . . . . . . . . . . . . . . . . 22 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℝ)
2928lem1d 11616 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝐹) − 1) ≤ (♯‘𝐹))
30 eluz2 12293 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) ↔ (((♯‘𝐹) − 1) ∈ ℤ ∧ (♯‘𝐹) ∈ ℤ ∧ ((♯‘𝐹) − 1) ≤ (♯‘𝐹)))
3127, 25, 29, 30syl3anbrc 1340 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
3231ad4antlr 732 . . . . . . . . . . . . . . . . . . 19 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)))
33 fzoss2 13119 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐹) ∈ (ℤ‘((♯‘𝐹) − 1)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
34 ssralv 3960 . . . . . . . . . . . . . . . . . . 19 ((0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
3532, 33, 343syl 18 . . . . . . . . . . . . . . . . . 18 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))}))
36 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → 𝐸:dom 𝐸⟶ran 𝐸)
3736adantr 484 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → 𝐸:dom 𝐸⟶ran 𝐸)
38 wrdf 13923 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹 ∈ Word dom 𝐸𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
39 simpll 766 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (♯‘𝐹) ∈ ℕ0) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
40 fzossrbm1 13120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
4125, 40syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
4241adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (♯‘𝐹) ∈ ℕ0) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))
4342sselda 3894 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (♯‘𝐹) ∈ ℕ0) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → 𝑖 ∈ (0..^(♯‘𝐹)))
4439, 43ffvelrnd 6848 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ (♯‘𝐹) ∈ ℕ0) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑖) ∈ dom 𝐸)
4544exp31 423 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐹:(0..^(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑖 ∈ (0..^((♯‘𝐹) − 1)) → (𝐹𝑖) ∈ dom 𝐸)))
4638, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐹 ∈ Word dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑖 ∈ (0..^((♯‘𝐹) − 1)) → (𝐹𝑖) ∈ dom 𝐸)))
4746adantl 485 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) → ((♯‘𝐹) ∈ ℕ0 → (𝑖 ∈ (0..^((♯‘𝐹) − 1)) → (𝐹𝑖) ∈ dom 𝐸)))
4847imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) → (𝑖 ∈ (0..^((♯‘𝐹) − 1)) → (𝐹𝑖) ∈ dom 𝐸))
4948ad3antrrr 729 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (𝑖 ∈ (0..^((♯‘𝐹) − 1)) → (𝐹𝑖) ∈ dom 𝐸))
5049imp 410 . . . . . . . . . . . . . . . . . . . . 21 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → (𝐹𝑖) ∈ dom 𝐸)
5137, 50ffvelrnd 6848 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → (𝐸‘(𝐹𝑖)) ∈ ran 𝐸)
52 eqcom 2765 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = (𝐸‘(𝐹𝑖)))
5352biimpi 219 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = (𝐸‘(𝐹𝑖)))
5453eleq1d 2836 . . . . . . . . . . . . . . . . . . . 20 ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ({(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ↔ (𝐸‘(𝐹𝑖)) ∈ ran 𝐸))
5551, 54syl5ibrcom 250 . . . . . . . . . . . . . . . . . . 19 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ 𝑖 ∈ (0..^((♯‘𝐹) − 1))) → ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
5655ralimdva 3108 . . . . . . . . . . . . . . . . . 18 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (∀𝑖 ∈ (0..^((♯‘𝐹) − 1))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
5735, 56syldc 48 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
5857adantr 484 . . . . . . . . . . . . . . . 16 ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸))
5958impcom 411 . . . . . . . . . . . . . . 15 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸)
60 breq2 5039 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝐹) + 1)))
6160adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → (2 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝐹) + 1)))
62 2re 11753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2 ∈ ℝ
6362a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝐹) ∈ ℕ0 → 2 ∈ ℝ)
64 1red 10685 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝐹) ∈ ℕ0 → 1 ∈ ℝ)
6563, 64, 28lesubaddd 11280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝐹) ↔ 2 ≤ ((♯‘𝐹) + 1)))
66 2m1e1 11805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 − 1) = 1
6766breq1i 5042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 − 1) ≤ (♯‘𝐹) ↔ 1 ≤ (♯‘𝐹))
68 elnnnn0c 11984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((♯‘𝐹) ∈ ℕ ↔ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)))
6968simplbi2 504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝐹) ∈ ℕ0 → (1 ≤ (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
7067, 69syl5bi 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝐹) → (♯‘𝐹) ∈ ℕ))
7165, 70sylbird 263 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((♯‘𝐹) ∈ ℕ0 → (2 ≤ ((♯‘𝐹) + 1) → (♯‘𝐹) ∈ ℕ))
7271adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) → (2 ≤ ((♯‘𝐹) + 1) → (♯‘𝐹) ∈ ℕ))
7372adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → (2 ≤ ((♯‘𝐹) + 1) → (♯‘𝐹) ∈ ℕ))
7461, 73sylbid 243 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → (2 ≤ (♯‘𝑃) → (♯‘𝐹) ∈ ℕ))
7574imp 410 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) ∈ ℕ)
7675adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (♯‘𝐹) ∈ ℕ)
77 lbfzo0 13131 . . . . . . . . . . . . . . . . . . . . . 22 (0 ∈ (0..^(♯‘𝐹)) ↔ (♯‘𝐹) ∈ ℕ)
7876, 77sylibr 237 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → 0 ∈ (0..^(♯‘𝐹)))
79 fzoend 13182 . . . . . . . . . . . . . . . . . . . . 21 (0 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
8078, 79syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
81 2fveq3 6667 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = ((♯‘𝐹) − 1) → (𝐸‘(𝐹𝑖)) = (𝐸‘(𝐹‘((♯‘𝐹) − 1))))
82 fveq2 6662 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = ((♯‘𝐹) − 1) → (𝑃𝑖) = (𝑃‘((♯‘𝐹) − 1)))
83 fvoveq1 7178 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑖 = ((♯‘𝐹) − 1) → (𝑃‘(𝑖 + 1)) = (𝑃‘(((♯‘𝐹) − 1) + 1)))
8482, 83preq12d 4637 . . . . . . . . . . . . . . . . . . . . . 22 (𝑖 = ((♯‘𝐹) − 1) → {(𝑃𝑖), (𝑃‘(𝑖 + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))})
8581, 84eqeq12d 2774 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 = ((♯‘𝐹) − 1) → ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))}))
8685adantl 485 . . . . . . . . . . . . . . . . . . . 20 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ 𝑖 = ((♯‘𝐹) − 1)) → ((𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ↔ (𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))}))
8780, 86rspcdv 3535 . . . . . . . . . . . . . . . . . . 19 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → (𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))}))
8814, 15npcand 11044 . . . . . . . . . . . . . . . . . . . . . . . 24 ((♯‘𝐹) ∈ ℕ0 → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
8988ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (((♯‘𝐹) − 1) + 1) = (♯‘𝐹))
9089fveq2d 6666 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (𝑃‘(((♯‘𝐹) − 1) + 1)) = (𝑃‘(♯‘𝐹)))
9190preq2d 4636 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))})
9291eqeq2d 2769 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} ↔ (𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))}))
9338ad4antlr 732 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → 𝐹:(0..^(♯‘𝐹))⟶dom 𝐸)
9471com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (2 ≤ ((♯‘𝐹) + 1) → ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ))
9560, 94syl6bi 256 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ)))
9695com3r 87 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (♯‘𝐹) ∈ ℕ)))
9796adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (♯‘𝐹) ∈ ℕ)))
9897imp31 421 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → (♯‘𝐹) ∈ ℕ)
9998, 77sylibr 237 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → 0 ∈ (0..^(♯‘𝐹)))
10099, 79syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → ((♯‘𝐹) − 1) ∈ (0..^(♯‘𝐹)))
10193, 100ffvelrnd 6848 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) → (𝐹‘((♯‘𝐹) − 1)) ∈ dom 𝐸)
102101adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (𝐹‘((♯‘𝐹) − 1)) ∈ dom 𝐸)
10336, 102ffvelrnd 6848 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → (𝐸‘(𝐹‘((♯‘𝐹) − 1))) ∈ ran 𝐸)
104 eqcom 2765 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} = (𝐸‘(𝐹‘((♯‘𝐹) − 1))))
105104biimpi 219 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} = (𝐸‘(𝐹‘((♯‘𝐹) − 1))))
106105eleq1d 2836 . . . . . . . . . . . . . . . . . . . . 21 ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸 ↔ (𝐸‘(𝐹‘((♯‘𝐹) − 1))) ∈ ran 𝐸))
107103, 106syl5ibrcom 250 . . . . . . . . . . . . . . . . . . . 20 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
10892, 107sylbid 243 . . . . . . . . . . . . . . . . . . 19 ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → ((𝐸‘(𝐹‘((♯‘𝐹) − 1))) = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(((♯‘𝐹) − 1) + 1))} → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
10987, 108syldc 48 . . . . . . . . . . . . . . . . . 18 (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} → ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
110109adantr 484 . . . . . . . . . . . . . . . . 17 ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
111110impcom 411 . . . . . . . . . . . . . . . 16 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸)
112 preq2 4630 . . . . . . . . . . . . . . . . . . 19 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} = {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))})
113112eleq1d 2836 . . . . . . . . . . . . . . . . . 18 ((𝑃‘0) = (𝑃‘(♯‘𝐹)) → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
114113adantl 485 . . . . . . . . . . . . . . . . 17 ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
115114adantl 485 . . . . . . . . . . . . . . . 16 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ({(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸 ↔ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘(♯‘𝐹))} ∈ ran 𝐸))
116111, 115mpbird 260 . . . . . . . . . . . . . . 15 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸)
11724, 59, 1163jca 1125 . . . . . . . . . . . . . 14 (((((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) ∧ 2 ≤ (♯‘𝑃)) ∧ 𝐸:dom 𝐸⟶ran 𝐸) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))
118117exp41 438 . . . . . . . . . . . . 13 ((((𝑃 ∈ Word 𝑉𝐹 ∈ Word dom 𝐸) ∧ (♯‘𝐹) ∈ ℕ0) ∧ (♯‘𝑃) = ((♯‘𝐹) + 1)) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
119118exp41 438 . . . . . . . . . . . 12 (𝑃 ∈ Word 𝑉 → (𝐹 ∈ Word dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))))
1208, 119syl 17 . . . . . . . . . . 11 (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹 ∈ Word dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))))
121120com13 88 . . . . . . . . . 10 ((♯‘𝐹) ∈ ℕ0 → (𝐹 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))))
1224, 121mpcom 38 . . . . . . . . 9 (𝐹 ∈ Word dom 𝐸 → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))))
123122imp 410 . . . . . . . 8 ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉) → ((♯‘𝑃) = ((♯‘𝐹) + 1) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
1247, 123mpd 15 . . . . . . 7 ((𝐹 ∈ Word dom 𝐸𝑃:(0...(♯‘𝐹))⟶𝑉) → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
125124expcom 417 . . . . . 6 (𝑃:(0...(♯‘𝐹))⟶𝑉 → (𝐹 ∈ Word dom 𝐸 → (2 ≤ (♯‘𝑃) → (𝐸:dom 𝐸⟶ran 𝐸 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
126125com14 96 . . . . 5 (𝐸:dom 𝐸⟶ran 𝐸 → (𝐹 ∈ Word dom 𝐸 → (2 ≤ (♯‘𝑃) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))))
127126imp 410 . . . 4 ((𝐸:dom 𝐸⟶ran 𝐸𝐹 ∈ Word dom 𝐸) → (2 ≤ (♯‘𝑃) → (𝑃:(0...(♯‘𝐹))⟶𝑉 → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸)))))
128127impcomd 415 . . 3 ((𝐸:dom 𝐸⟶ran 𝐸𝐹 ∈ Word dom 𝐸) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
1293, 128sylan 583 . 2 ((𝐸:dom 𝐸1-1𝑅𝐹 ∈ Word dom 𝐸) → ((𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) → ((∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))))
1301293imp 1108 1 (((𝐸:dom 𝐸1-1𝑅𝐹 ∈ Word dom 𝐸) ∧ (𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ 2 ≤ (♯‘𝑃)) ∧ (∀𝑖 ∈ (0..^(♯‘𝐹))(𝐸‘(𝐹𝑖)) = {(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∧ (𝑃‘0) = (𝑃‘(♯‘𝐹)))) → ((lastS‘𝑃) = (𝑃‘0) ∧ ∀𝑖 ∈ (0..^((♯‘𝐹) − 1)){(𝑃𝑖), (𝑃‘(𝑖 + 1))} ∈ ran 𝐸 ∧ {(𝑃‘((♯‘𝐹) − 1)), (𝑃‘0)} ∈ ran 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3070   ⊆ wss 3860  {cpr 4527   class class class wbr 5035  dom cdm 5527  ran crn 5528   Fn wfn 6334  ⟶wf 6335  –1-1→wf1 6336  ‘cfv 6339  (class class class)co 7155  ℝcr 10579  0cc0 10580  1c1 10581   + caddc 10583   ≤ cle 10719   − cmin 10913  ℕcn 11679  2c2 11734  ℕ0cn0 11939  ℤcz 12025  ℤ≥cuz 12287  ...cfz 12944  ..^cfzo 13087  ♯chash 13745  Word cword 13918  lastSclsw 13966 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-card 9406  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-nn 11680  df-2 11742  df-n0 11940  df-z 12026  df-uz 12288  df-fz 12945  df-fzo 13088  df-hash 13746  df-word 13919  df-lsw 13967 This theorem is referenced by:  clwlkclwwlklem3  27890
 Copyright terms: Public domain W3C validator