![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem5 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10453. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem5 | ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nneob 8693 | . 2 ⊢ (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))) | |
2 | fin1a2lem.b | . . . . . 6 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
3 | 2 | fin1a2lem4 10441 | . . . . 5 ⊢ 𝐸:ω–1-1→ω |
4 | f1fn 6806 | . . . . 5 ⊢ (𝐸:ω–1-1→ω → 𝐸 Fn ω) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐸 Fn ω |
6 | fvelrnb 6969 | . . . 4 ⊢ (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴) |
8 | eqcom 2742 | . . . . 5 ⊢ ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (𝐸‘𝑎)) | |
9 | 2 | fin1a2lem3 10440 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
10 | 9 | eqeq2d 2746 | . . . . 5 ⊢ (𝑎 ∈ ω → (𝐴 = (𝐸‘𝑎) ↔ 𝐴 = (2o ·o 𝑎))) |
11 | 8, 10 | bitrid 283 | . . . 4 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (2o ·o 𝑎))) |
12 | 11 | rexbiia 3090 | . . 3 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
13 | 7, 12 | bitri 275 | . 2 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
14 | fvelrnb 6969 | . . . . 5 ⊢ (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴)) | |
15 | 5, 14 | ax-mp 5 | . . . 4 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴) |
16 | eqcom 2742 | . . . . . 6 ⊢ ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸‘𝑎)) | |
17 | 9 | eqeq2d 2746 | . . . . . 6 ⊢ (𝑎 ∈ ω → (suc 𝐴 = (𝐸‘𝑎) ↔ suc 𝐴 = (2o ·o 𝑎))) |
18 | 16, 17 | bitrid 283 | . . . . 5 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎))) |
19 | 18 | rexbiia 3090 | . . . 4 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
20 | 15, 19 | bitri 275 | . . 3 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
21 | 20 | notbii 320 | . 2 ⊢ (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
22 | 1, 13, 21 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 ↦ cmpt 5231 ran crn 5690 suc csuc 6388 Fn wfn 6558 –1-1→wf1 6560 ‘cfv 6563 (class class class)co 7431 ωcom 7887 2oc2o 8499 ·o comu 8503 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-omul 8510 |
This theorem is referenced by: fin1a2lem6 10443 |
Copyright terms: Public domain | W3C validator |