Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem5 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10077. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem5 | ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nneob 8423 | . 2 ⊢ (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))) | |
2 | fin1a2lem.b | . . . . . 6 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
3 | 2 | fin1a2lem4 10065 | . . . . 5 ⊢ 𝐸:ω–1-1→ω |
4 | f1fn 6652 | . . . . 5 ⊢ (𝐸:ω–1-1→ω → 𝐸 Fn ω) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐸 Fn ω |
6 | fvelrnb 6809 | . . . 4 ⊢ (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴) |
8 | eqcom 2746 | . . . . 5 ⊢ ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (𝐸‘𝑎)) | |
9 | 2 | fin1a2lem3 10064 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
10 | 9 | eqeq2d 2750 | . . . . 5 ⊢ (𝑎 ∈ ω → (𝐴 = (𝐸‘𝑎) ↔ 𝐴 = (2o ·o 𝑎))) |
11 | 8, 10 | syl5bb 286 | . . . 4 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (2o ·o 𝑎))) |
12 | 11 | rexbiia 3177 | . . 3 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
13 | 7, 12 | bitri 278 | . 2 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
14 | fvelrnb 6809 | . . . . 5 ⊢ (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴)) | |
15 | 5, 14 | ax-mp 5 | . . . 4 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴) |
16 | eqcom 2746 | . . . . . 6 ⊢ ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸‘𝑎)) | |
17 | 9 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑎 ∈ ω → (suc 𝐴 = (𝐸‘𝑎) ↔ suc 𝐴 = (2o ·o 𝑎))) |
18 | 16, 17 | syl5bb 286 | . . . . 5 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎))) |
19 | 18 | rexbiia 3177 | . . . 4 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
20 | 15, 19 | bitri 278 | . . 3 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
21 | 20 | notbii 323 | . 2 ⊢ (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
22 | 1, 13, 21 | 3bitr4g 317 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 = wceq 1543 ∈ wcel 2112 ∃wrex 3065 ↦ cmpt 5152 ran crn 5580 suc csuc 6250 Fn wfn 6410 –1-1→wf1 6412 ‘cfv 6415 (class class class)co 7252 ωcom 7684 2oc2o 8238 ·o comu 8242 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pr 5346 ax-un 7563 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-2o 8245 df-oadd 8248 df-omul 8249 |
This theorem is referenced by: fin1a2lem6 10067 |
Copyright terms: Public domain | W3C validator |