![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem5 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 9525. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem5 | ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nneob 7972 | . 2 ⊢ (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2𝑜 ·𝑜 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2𝑜 ·𝑜 𝑎))) | |
2 | fin1a2lem.b | . . . . . 6 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2𝑜 ·𝑜 𝑥)) | |
3 | 2 | fin1a2lem4 9513 | . . . . 5 ⊢ 𝐸:ω–1-1→ω |
4 | f1fn 6317 | . . . . 5 ⊢ (𝐸:ω–1-1→ω → 𝐸 Fn ω) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐸 Fn ω |
6 | fvelrnb 6468 | . . . 4 ⊢ (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴) |
8 | eqcom 2806 | . . . . 5 ⊢ ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (𝐸‘𝑎)) | |
9 | 2 | fin1a2lem3 9512 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2𝑜 ·𝑜 𝑎)) |
10 | 9 | eqeq2d 2809 | . . . . 5 ⊢ (𝑎 ∈ ω → (𝐴 = (𝐸‘𝑎) ↔ 𝐴 = (2𝑜 ·𝑜 𝑎))) |
11 | 8, 10 | syl5bb 275 | . . . 4 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (2𝑜 ·𝑜 𝑎))) |
12 | 11 | rexbiia 3221 | . . 3 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2𝑜 ·𝑜 𝑎)) |
13 | 7, 12 | bitri 267 | . 2 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2𝑜 ·𝑜 𝑎)) |
14 | fvelrnb 6468 | . . . . 5 ⊢ (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴)) | |
15 | 5, 14 | ax-mp 5 | . . . 4 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴) |
16 | eqcom 2806 | . . . . . 6 ⊢ ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸‘𝑎)) | |
17 | 9 | eqeq2d 2809 | . . . . . 6 ⊢ (𝑎 ∈ ω → (suc 𝐴 = (𝐸‘𝑎) ↔ suc 𝐴 = (2𝑜 ·𝑜 𝑎))) |
18 | 16, 17 | syl5bb 275 | . . . . 5 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (2𝑜 ·𝑜 𝑎))) |
19 | 18 | rexbiia 3221 | . . . 4 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2𝑜 ·𝑜 𝑎)) |
20 | 15, 19 | bitri 267 | . . 3 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2𝑜 ·𝑜 𝑎)) |
21 | 20 | notbii 312 | . 2 ⊢ (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2𝑜 ·𝑜 𝑎)) |
22 | 1, 13, 21 | 3bitr4g 306 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 ∃wrex 3090 ↦ cmpt 4922 ran crn 5313 suc csuc 5943 Fn wfn 6096 –1-1→wf1 6098 ‘cfv 6101 (class class class)co 6878 ωcom 7299 2𝑜c2o 7793 ·𝑜 comu 7797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 |
This theorem is referenced by: fin1a2lem6 9515 |
Copyright terms: Public domain | W3C validator |