MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem5 Structured version   Visualization version   GIF version

Theorem fin1a2lem5 10473
Description: Lemma for fin1a2 10484. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
Assertion
Ref Expression
fin1a2lem5 (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸))

Proof of Theorem fin1a2lem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nneob 8712 . 2 (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)))
2 fin1a2lem.b . . . . . 6 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
32fin1a2lem4 10472 . . . . 5 𝐸:ω–1-1→ω
4 f1fn 6818 . . . . 5 (𝐸:ω–1-1→ω → 𝐸 Fn ω)
53, 4ax-mp 5 . . . 4 𝐸 Fn ω
6 fvelrnb 6982 . . . 4 (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = 𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = 𝐴)
8 eqcom 2747 . . . . 5 ((𝐸𝑎) = 𝐴𝐴 = (𝐸𝑎))
92fin1a2lem3 10471 . . . . . 6 (𝑎 ∈ ω → (𝐸𝑎) = (2o ·o 𝑎))
109eqeq2d 2751 . . . . 5 (𝑎 ∈ ω → (𝐴 = (𝐸𝑎) ↔ 𝐴 = (2o ·o 𝑎)))
118, 10bitrid 283 . . . 4 (𝑎 ∈ ω → ((𝐸𝑎) = 𝐴𝐴 = (2o ·o 𝑎)))
1211rexbiia 3098 . . 3 (∃𝑎 ∈ ω (𝐸𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎))
137, 12bitri 275 . 2 (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎))
14 fvelrnb 6982 . . . . 5 (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴))
155, 14ax-mp 5 . . . 4 (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴)
16 eqcom 2747 . . . . . 6 ((𝐸𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸𝑎))
179eqeq2d 2751 . . . . . 6 (𝑎 ∈ ω → (suc 𝐴 = (𝐸𝑎) ↔ suc 𝐴 = (2o ·o 𝑎)))
1816, 17bitrid 283 . . . . 5 (𝑎 ∈ ω → ((𝐸𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎)))
1918rexbiia 3098 . . . 4 (∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
2015, 19bitri 275 . . 3 (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
2120notbii 320 . 2 (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
221, 13, 213bitr4g 314 1 (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076  cmpt 5249  ran crn 5701  suc csuc 6397   Fn wfn 6568  1-1wf1 6570  cfv 6573  (class class class)co 7448  ωcom 7903  2oc2o 8516   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527
This theorem is referenced by:  fin1a2lem6  10474
  Copyright terms: Public domain W3C validator