![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fin1a2lem5 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10484. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem5 | ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nneob 8712 | . 2 ⊢ (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))) | |
2 | fin1a2lem.b | . . . . . 6 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
3 | 2 | fin1a2lem4 10472 | . . . . 5 ⊢ 𝐸:ω–1-1→ω |
4 | f1fn 6818 | . . . . 5 ⊢ (𝐸:ω–1-1→ω → 𝐸 Fn ω) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐸 Fn ω |
6 | fvelrnb 6982 | . . . 4 ⊢ (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴) |
8 | eqcom 2747 | . . . . 5 ⊢ ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (𝐸‘𝑎)) | |
9 | 2 | fin1a2lem3 10471 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
10 | 9 | eqeq2d 2751 | . . . . 5 ⊢ (𝑎 ∈ ω → (𝐴 = (𝐸‘𝑎) ↔ 𝐴 = (2o ·o 𝑎))) |
11 | 8, 10 | bitrid 283 | . . . 4 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (2o ·o 𝑎))) |
12 | 11 | rexbiia 3098 | . . 3 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
13 | 7, 12 | bitri 275 | . 2 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
14 | fvelrnb 6982 | . . . . 5 ⊢ (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴)) | |
15 | 5, 14 | ax-mp 5 | . . . 4 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴) |
16 | eqcom 2747 | . . . . . 6 ⊢ ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸‘𝑎)) | |
17 | 9 | eqeq2d 2751 | . . . . . 6 ⊢ (𝑎 ∈ ω → (suc 𝐴 = (𝐸‘𝑎) ↔ suc 𝐴 = (2o ·o 𝑎))) |
18 | 16, 17 | bitrid 283 | . . . . 5 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎))) |
19 | 18 | rexbiia 3098 | . . . 4 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
20 | 15, 19 | bitri 275 | . . 3 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
21 | 20 | notbii 320 | . 2 ⊢ (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
22 | 1, 13, 21 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 ↦ cmpt 5249 ran crn 5701 suc csuc 6397 Fn wfn 6568 –1-1→wf1 6570 ‘cfv 6573 (class class class)co 7448 ωcom 7903 2oc2o 8516 ·o comu 8520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-omul 8527 |
This theorem is referenced by: fin1a2lem6 10474 |
Copyright terms: Public domain | W3C validator |