MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin1a2lem5 Structured version   Visualization version   GIF version

Theorem fin1a2lem5 10317
Description: Lemma for fin1a2 10328. (Contributed by Stefan O'Rear, 7-Nov-2014.)
Hypothesis
Ref Expression
fin1a2lem.b 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
Assertion
Ref Expression
fin1a2lem5 (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸))

Proof of Theorem fin1a2lem5
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nneob 8581 . 2 (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)))
2 fin1a2lem.b . . . . . 6 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥))
32fin1a2lem4 10316 . . . . 5 𝐸:ω–1-1→ω
4 f1fn 6725 . . . . 5 (𝐸:ω–1-1→ω → 𝐸 Fn ω)
53, 4ax-mp 5 . . . 4 𝐸 Fn ω
6 fvelrnb 6887 . . . 4 (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = 𝐴))
75, 6ax-mp 5 . . 3 (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = 𝐴)
8 eqcom 2736 . . . . 5 ((𝐸𝑎) = 𝐴𝐴 = (𝐸𝑎))
92fin1a2lem3 10315 . . . . . 6 (𝑎 ∈ ω → (𝐸𝑎) = (2o ·o 𝑎))
109eqeq2d 2740 . . . . 5 (𝑎 ∈ ω → (𝐴 = (𝐸𝑎) ↔ 𝐴 = (2o ·o 𝑎)))
118, 10bitrid 283 . . . 4 (𝑎 ∈ ω → ((𝐸𝑎) = 𝐴𝐴 = (2o ·o 𝑎)))
1211rexbiia 3074 . . 3 (∃𝑎 ∈ ω (𝐸𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎))
137, 12bitri 275 . 2 (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎))
14 fvelrnb 6887 . . . . 5 (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴))
155, 14ax-mp 5 . . . 4 (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴)
16 eqcom 2736 . . . . . 6 ((𝐸𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸𝑎))
179eqeq2d 2740 . . . . . 6 (𝑎 ∈ ω → (suc 𝐴 = (𝐸𝑎) ↔ suc 𝐴 = (2o ·o 𝑎)))
1816, 17bitrid 283 . . . . 5 (𝑎 ∈ ω → ((𝐸𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎)))
1918rexbiia 3074 . . . 4 (∃𝑎 ∈ ω (𝐸𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
2015, 19bitri 275 . . 3 (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
2120notbii 320 . 2 (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))
221, 13, 213bitr4g 314 1 (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wrex 3053  cmpt 5176  ran crn 5624  suc csuc 6313   Fn wfn 6481  1-1wf1 6483  cfv 6486  (class class class)co 7353  ωcom 7806  2oc2o 8389   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400
This theorem is referenced by:  fin1a2lem6  10318
  Copyright terms: Public domain W3C validator