Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fin1a2lem5 | Structured version Visualization version GIF version |
Description: Lemma for fin1a2 10155. (Contributed by Stefan O'Rear, 7-Nov-2014.) |
Ref | Expression |
---|---|
fin1a2lem.b | ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) |
Ref | Expression |
---|---|
fin1a2lem5 | ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nneob 8460 | . 2 ⊢ (𝐴 ∈ ω → (∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎) ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎))) | |
2 | fin1a2lem.b | . . . . . 6 ⊢ 𝐸 = (𝑥 ∈ ω ↦ (2o ·o 𝑥)) | |
3 | 2 | fin1a2lem4 10143 | . . . . 5 ⊢ 𝐸:ω–1-1→ω |
4 | f1fn 6667 | . . . . 5 ⊢ (𝐸:ω–1-1→ω → 𝐸 Fn ω) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ 𝐸 Fn ω |
6 | fvelrnb 6824 | . . . 4 ⊢ (𝐸 Fn ω → (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴) |
8 | eqcom 2746 | . . . . 5 ⊢ ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (𝐸‘𝑎)) | |
9 | 2 | fin1a2lem3 10142 | . . . . . 6 ⊢ (𝑎 ∈ ω → (𝐸‘𝑎) = (2o ·o 𝑎)) |
10 | 9 | eqeq2d 2750 | . . . . 5 ⊢ (𝑎 ∈ ω → (𝐴 = (𝐸‘𝑎) ↔ 𝐴 = (2o ·o 𝑎))) |
11 | 8, 10 | syl5bb 282 | . . . 4 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = 𝐴 ↔ 𝐴 = (2o ·o 𝑎))) |
12 | 11 | rexbiia 3178 | . . 3 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = 𝐴 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
13 | 7, 12 | bitri 274 | . 2 ⊢ (𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω 𝐴 = (2o ·o 𝑎)) |
14 | fvelrnb 6824 | . . . . 5 ⊢ (𝐸 Fn ω → (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴)) | |
15 | 5, 14 | ax-mp 5 | . . . 4 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴) |
16 | eqcom 2746 | . . . . . 6 ⊢ ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (𝐸‘𝑎)) | |
17 | 9 | eqeq2d 2750 | . . . . . 6 ⊢ (𝑎 ∈ ω → (suc 𝐴 = (𝐸‘𝑎) ↔ suc 𝐴 = (2o ·o 𝑎))) |
18 | 16, 17 | syl5bb 282 | . . . . 5 ⊢ (𝑎 ∈ ω → ((𝐸‘𝑎) = suc 𝐴 ↔ suc 𝐴 = (2o ·o 𝑎))) |
19 | 18 | rexbiia 3178 | . . . 4 ⊢ (∃𝑎 ∈ ω (𝐸‘𝑎) = suc 𝐴 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
20 | 15, 19 | bitri 274 | . . 3 ⊢ (suc 𝐴 ∈ ran 𝐸 ↔ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
21 | 20 | notbii 319 | . 2 ⊢ (¬ suc 𝐴 ∈ ran 𝐸 ↔ ¬ ∃𝑎 ∈ ω suc 𝐴 = (2o ·o 𝑎)) |
22 | 1, 13, 21 | 3bitr4g 313 | 1 ⊢ (𝐴 ∈ ω → (𝐴 ∈ ran 𝐸 ↔ ¬ suc 𝐴 ∈ ran 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∃wrex 3066 ↦ cmpt 5161 ran crn 5589 suc csuc 6265 Fn wfn 6425 –1-1→wf1 6427 ‘cfv 6430 (class class class)co 7268 ωcom 7700 2oc2o 8275 ·o comu 8279 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-oadd 8285 df-omul 8286 |
This theorem is referenced by: fin1a2lem6 10145 |
Copyright terms: Public domain | W3C validator |