MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   GIF version

Theorem frlmlbs 20759
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmlbs.u 𝑈 = (𝑅 unitVec 𝐼)
frlmlbs.j 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
frlmlbs ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)

Proof of Theorem frlmlbs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
2 frlmlbs.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
3 eqid 2737 . . . 4 (Base‘𝐹) = (Base‘𝐹)
41, 2, 3uvcff 20753 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼⟶(Base‘𝐹))
54frnd 6553 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈 ⊆ (Base‘𝐹))
6 suppssdm 7919 . . . . . 6 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
7 eqid 2737 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
82, 7, 3frlmbasf 20722 . . . . . . 7 ((𝐼𝑉𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
98adantll 714 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
106, 9fssdm 6565 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g𝑅)) ⊆ 𝐼)
1110ralrimiva 3105 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
12 rabid2 3293 . . . 4 ((Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
1311, 12sylibr 237 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
14 ssid 3923 . . . 4 𝐼𝐼
15 eqid 2737 . . . . 5 (LSpan‘𝐹) = (LSpan‘𝐹)
16 eqid 2737 . . . . 5 (0g𝑅) = (0g𝑅)
17 eqid 2737 . . . . 5 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼}
182, 1, 15, 3, 16, 17frlmsslsp 20758 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐼𝐼) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
1914, 18mp3an3 1452 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
20 ffn 6545 . . . . 5 (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼)
21 fnima 6508 . . . . 5 (𝑈 Fn 𝐼 → (𝑈𝐼) = ran 𝑈)
224, 20, 213syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑈𝐼) = ran 𝑈)
2322fveq2d 6721 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = ((LSpan‘𝐹)‘ran 𝑈))
2413, 19, 233eqtr2rd 2784 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
25 eqid 2737 . . . . . 6 ( ·𝑠𝐹) = ( ·𝑠𝐹)
26 eqid 2737 . . . . . 6 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})}
27 simpll 767 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring)
28 simplr 769 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝐼𝑉)
29 difssd 4047 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼)
30 vsnid 4578 . . . . . . 7 𝑐 ∈ {𝑐}
31 snssi 4721 . . . . . . . . 9 (𝑐𝐼 → {𝑐} ⊆ 𝐼)
3231ad2antrl 728 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼)
33 dfss4 4173 . . . . . . . 8 ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3432, 33sylib 221 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3530, 34eleqtrrid 2845 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐})))
362frlmsca 20715 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3736fveq2d 6721 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
3836fveq2d 6721 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g𝑅) = (0g‘(Scalar‘𝐹)))
3938sneqd 4553 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → {(0g𝑅)} = {(0g‘(Scalar‘𝐹))})
4037, 39difeq12d 4038 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))
4140eleq2d 2823 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})))
4241biimpar 481 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
4342adantrl 716 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
442, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43frlmssuvc2 20757 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
4516, 7ringelnzr 20304 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑅 ∈ NzRing)
4627, 43, 45syl2anc 587 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing)
471, 2, 3uvcf1 20754 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → 𝑈:𝐼1-1→(Base‘𝐹))
4846, 28, 47syl2anc 587 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼1-1→(Base‘𝐹))
49 df-f1 6385 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun 𝑈))
5049simprbi 500 . . . . . . . . 9 (𝑈:𝐼1-1→(Base‘𝐹) → Fun 𝑈)
51 imadif 6464 . . . . . . . . 9 (Fun 𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
5248, 50, 513syl 18 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
53 f1fn 6616 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) → 𝑈 Fn 𝐼)
5448, 53, 213syl 18 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈𝐼) = ran 𝑈)
5548, 53syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼)
56 simprl 771 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐𝐼)
57 fnsnfv 6790 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝑐𝐼) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5855, 56, 57syl2anc 587 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5958eqcomd 2743 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈𝑐)})
6054, 59difeq12d 4038 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((𝑈𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈𝑐)}))
6152, 60eqtr2d 2778 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐})))
6261fveq2d 6721 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))))
632, 1, 15, 3, 16, 26frlmsslsp 20758 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6427, 28, 29, 63syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6562, 64eqtrd 2777 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6644, 65neleqtrrd 2860 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
6766ralrimivva 3112 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
68 oveq2 7221 . . . . . . . 8 (𝑎 = (𝑈𝑐) → (𝑏( ·𝑠𝐹)𝑎) = (𝑏( ·𝑠𝐹)(𝑈𝑐)))
69 sneq 4551 . . . . . . . . . 10 (𝑎 = (𝑈𝑐) → {𝑎} = {(𝑈𝑐)})
7069difeq2d 4037 . . . . . . . . 9 (𝑎 = (𝑈𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈𝑐)}))
7170fveq2d 6721 . . . . . . . 8 (𝑎 = (𝑈𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
7268, 71eleq12d 2832 . . . . . . 7 (𝑎 = (𝑈𝑐) → ((𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7372notbid 321 . . . . . 6 (𝑎 = (𝑈𝑐) → (¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7473ralbidv 3118 . . . . 5 (𝑎 = (𝑈𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7574ralrn 6907 . . . 4 (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
764, 20, 753syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7767, 76mpbird 260 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))
782ovexi 7247 . . 3 𝐹 ∈ V
79 eqid 2737 . . . 4 (Scalar‘𝐹) = (Scalar‘𝐹)
80 eqid 2737 . . . 4 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
81 frlmlbs.j . . . 4 𝐽 = (LBasis‘𝐹)
82 eqid 2737 . . . 4 (0g‘(Scalar‘𝐹)) = (0g‘(Scalar‘𝐹))
833, 79, 25, 80, 81, 15, 82islbs 20113 . . 3 (𝐹 ∈ V → (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))))
8478, 83ax-mp 5 . 2 (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))
855, 24, 77, 84syl3anbrc 1345 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  {crab 3065  Vcvv 3408  cdif 3863  wss 3866  {csn 4541  ccnv 5550  ran crn 5552  cima 5554  Fun wfun 6374   Fn wfn 6375  wf 6376  1-1wf1 6377  cfv 6380  (class class class)co 7213   supp csupp 7903  Basecbs 16760  Scalarcsca 16805   ·𝑠 cvsca 16806  0gc0g 16944  Ringcrg 19562  LSpanclspn 20008  LBasisclbs 20111  NzRingcnzr 20295   freeLMod cfrlm 20708   unitVec cuvc 20744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-ring 19564  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-lmhm 20059  df-lbs 20112  df-sra 20209  df-rgmod 20210  df-nzr 20296  df-dsmm 20694  df-frlm 20709  df-uvc 20745
This theorem is referenced by:  frlmup3  20762  frlmup4  20763  lmisfree  20804  frlmisfrlm  20810  frlmdim  31408  lindsdom  35508  aacllem  46176
  Copyright terms: Public domain W3C validator