MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   GIF version

Theorem frlmlbs 21722
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmlbs.u 𝑈 = (𝑅 unitVec 𝐼)
frlmlbs.j 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
frlmlbs ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)

Proof of Theorem frlmlbs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
2 frlmlbs.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
3 eqid 2729 . . . 4 (Base‘𝐹) = (Base‘𝐹)
41, 2, 3uvcff 21716 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼⟶(Base‘𝐹))
54frnd 6664 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈 ⊆ (Base‘𝐹))
6 suppssdm 8117 . . . . . 6 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
7 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
82, 7, 3frlmbasf 21685 . . . . . . 7 ((𝐼𝑉𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
98adantll 714 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
106, 9fssdm 6675 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g𝑅)) ⊆ 𝐼)
1110ralrimiva 3121 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
12 rabid2 3430 . . . 4 ((Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
1311, 12sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
14 ssid 3960 . . . 4 𝐼𝐼
15 eqid 2729 . . . . 5 (LSpan‘𝐹) = (LSpan‘𝐹)
16 eqid 2729 . . . . 5 (0g𝑅) = (0g𝑅)
17 eqid 2729 . . . . 5 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼}
182, 1, 15, 3, 16, 17frlmsslsp 21721 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐼𝐼) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
1914, 18mp3an3 1452 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
20 ffn 6656 . . . . 5 (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼)
21 fnima 6616 . . . . 5 (𝑈 Fn 𝐼 → (𝑈𝐼) = ran 𝑈)
224, 20, 213syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑈𝐼) = ran 𝑈)
2322fveq2d 6830 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = ((LSpan‘𝐹)‘ran 𝑈))
2413, 19, 233eqtr2rd 2771 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
25 eqid 2729 . . . . . 6 ( ·𝑠𝐹) = ( ·𝑠𝐹)
26 eqid 2729 . . . . . 6 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})}
27 simpll 766 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring)
28 simplr 768 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝐼𝑉)
29 difssd 4090 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼)
30 vsnid 4617 . . . . . . 7 𝑐 ∈ {𝑐}
31 snssi 4762 . . . . . . . . 9 (𝑐𝐼 → {𝑐} ⊆ 𝐼)
3231ad2antrl 728 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼)
33 dfss4 4222 . . . . . . . 8 ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3432, 33sylib 218 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3530, 34eleqtrrid 2835 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐})))
362frlmsca 21678 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3736fveq2d 6830 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
3836fveq2d 6830 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g𝑅) = (0g‘(Scalar‘𝐹)))
3938sneqd 4591 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → {(0g𝑅)} = {(0g‘(Scalar‘𝐹))})
4037, 39difeq12d 4080 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))
4140eleq2d 2814 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})))
4241biimpar 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
4342adantrl 716 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
442, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43frlmssuvc2 21720 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
4516, 7ringelnzr 20426 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑅 ∈ NzRing)
4627, 43, 45syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing)
471, 2, 3uvcf1 21717 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → 𝑈:𝐼1-1→(Base‘𝐹))
4846, 28, 47syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼1-1→(Base‘𝐹))
49 df-f1 6491 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun 𝑈))
5049simprbi 496 . . . . . . . . 9 (𝑈:𝐼1-1→(Base‘𝐹) → Fun 𝑈)
51 imadif 6570 . . . . . . . . 9 (Fun 𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
5248, 50, 513syl 18 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
53 f1fn 6725 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) → 𝑈 Fn 𝐼)
5448, 53, 213syl 18 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈𝐼) = ran 𝑈)
5548, 53syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼)
56 simprl 770 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐𝐼)
57 fnsnfv 6906 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝑐𝐼) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5855, 56, 57syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5958eqcomd 2735 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈𝑐)})
6054, 59difeq12d 4080 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((𝑈𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈𝑐)}))
6152, 60eqtr2d 2765 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐})))
6261fveq2d 6830 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))))
632, 1, 15, 3, 16, 26frlmsslsp 21721 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6427, 28, 29, 63syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6562, 64eqtrd 2764 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6644, 65neleqtrrd 2851 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
6766ralrimivva 3172 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
68 oveq2 7361 . . . . . . . 8 (𝑎 = (𝑈𝑐) → (𝑏( ·𝑠𝐹)𝑎) = (𝑏( ·𝑠𝐹)(𝑈𝑐)))
69 sneq 4589 . . . . . . . . . 10 (𝑎 = (𝑈𝑐) → {𝑎} = {(𝑈𝑐)})
7069difeq2d 4079 . . . . . . . . 9 (𝑎 = (𝑈𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈𝑐)}))
7170fveq2d 6830 . . . . . . . 8 (𝑎 = (𝑈𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
7268, 71eleq12d 2822 . . . . . . 7 (𝑎 = (𝑈𝑐) → ((𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7372notbid 318 . . . . . 6 (𝑎 = (𝑈𝑐) → (¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7473ralbidv 3152 . . . . 5 (𝑎 = (𝑈𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7574ralrn 7026 . . . 4 (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
764, 20, 753syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7767, 76mpbird 257 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))
782ovexi 7387 . . 3 𝐹 ∈ V
79 eqid 2729 . . . 4 (Scalar‘𝐹) = (Scalar‘𝐹)
80 eqid 2729 . . . 4 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
81 frlmlbs.j . . . 4 𝐽 = (LBasis‘𝐹)
82 eqid 2729 . . . 4 (0g‘(Scalar‘𝐹)) = (0g‘(Scalar‘𝐹))
833, 79, 25, 80, 81, 15, 82islbs 20998 . . 3 (𝐹 ∈ V → (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))))
8478, 83ax-mp 5 . 2 (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))
855, 24, 77, 84syl3anbrc 1344 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396  Vcvv 3438  cdif 3902  wss 3905  {csn 4579  ccnv 5622  ran crn 5624  cima 5626  Fun wfun 6480   Fn wfn 6481  wf 6482  1-1wf1 6483  cfv 6486  (class class class)co 7353   supp csupp 8100  Basecbs 17138  Scalarcsca 17182   ·𝑠 cvsca 17183  0gc0g 17361  Ringcrg 20136  NzRingcnzr 20415  LSpanclspn 20892  LBasisclbs 20996   freeLMod cfrlm 21671   unitVec cuvc 21707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-nzr 20416  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-lmhm 20944  df-lbs 20997  df-sra 21095  df-rgmod 21096  df-dsmm 21657  df-frlm 21672  df-uvc 21708
This theorem is referenced by:  frlmup3  21725  frlmup4  21726  lmisfree  21767  frlmisfrlm  21773  frlmdim  33583  lindsdom  37593  aacllem  49787
  Copyright terms: Public domain W3C validator