MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   GIF version

Theorem frlmlbs 21713
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmlbs.u 𝑈 = (𝑅 unitVec 𝐼)
frlmlbs.j 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
frlmlbs ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)

Proof of Theorem frlmlbs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
2 frlmlbs.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
3 eqid 2730 . . . 4 (Base‘𝐹) = (Base‘𝐹)
41, 2, 3uvcff 21707 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼⟶(Base‘𝐹))
54frnd 6699 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈 ⊆ (Base‘𝐹))
6 suppssdm 8159 . . . . . 6 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
7 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
82, 7, 3frlmbasf 21676 . . . . . . 7 ((𝐼𝑉𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
98adantll 714 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
106, 9fssdm 6710 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g𝑅)) ⊆ 𝐼)
1110ralrimiva 3126 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
12 rabid2 3442 . . . 4 ((Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
1311, 12sylibr 234 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
14 ssid 3972 . . . 4 𝐼𝐼
15 eqid 2730 . . . . 5 (LSpan‘𝐹) = (LSpan‘𝐹)
16 eqid 2730 . . . . 5 (0g𝑅) = (0g𝑅)
17 eqid 2730 . . . . 5 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼}
182, 1, 15, 3, 16, 17frlmsslsp 21712 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐼𝐼) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
1914, 18mp3an3 1452 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
20 ffn 6691 . . . . 5 (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼)
21 fnima 6651 . . . . 5 (𝑈 Fn 𝐼 → (𝑈𝐼) = ran 𝑈)
224, 20, 213syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑈𝐼) = ran 𝑈)
2322fveq2d 6865 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = ((LSpan‘𝐹)‘ran 𝑈))
2413, 19, 233eqtr2rd 2772 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
25 eqid 2730 . . . . . 6 ( ·𝑠𝐹) = ( ·𝑠𝐹)
26 eqid 2730 . . . . . 6 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})}
27 simpll 766 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring)
28 simplr 768 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝐼𝑉)
29 difssd 4103 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼)
30 vsnid 4630 . . . . . . 7 𝑐 ∈ {𝑐}
31 snssi 4775 . . . . . . . . 9 (𝑐𝐼 → {𝑐} ⊆ 𝐼)
3231ad2antrl 728 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼)
33 dfss4 4235 . . . . . . . 8 ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3432, 33sylib 218 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3530, 34eleqtrrid 2836 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐})))
362frlmsca 21669 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3736fveq2d 6865 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
3836fveq2d 6865 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g𝑅) = (0g‘(Scalar‘𝐹)))
3938sneqd 4604 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → {(0g𝑅)} = {(0g‘(Scalar‘𝐹))})
4037, 39difeq12d 4093 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))
4140eleq2d 2815 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})))
4241biimpar 477 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
4342adantrl 716 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
442, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43frlmssuvc2 21711 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
4516, 7ringelnzr 20439 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑅 ∈ NzRing)
4627, 43, 45syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing)
471, 2, 3uvcf1 21708 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → 𝑈:𝐼1-1→(Base‘𝐹))
4846, 28, 47syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼1-1→(Base‘𝐹))
49 df-f1 6519 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun 𝑈))
5049simprbi 496 . . . . . . . . 9 (𝑈:𝐼1-1→(Base‘𝐹) → Fun 𝑈)
51 imadif 6603 . . . . . . . . 9 (Fun 𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
5248, 50, 513syl 18 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
53 f1fn 6760 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) → 𝑈 Fn 𝐼)
5448, 53, 213syl 18 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈𝐼) = ran 𝑈)
5548, 53syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼)
56 simprl 770 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐𝐼)
57 fnsnfv 6943 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝑐𝐼) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5855, 56, 57syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5958eqcomd 2736 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈𝑐)})
6054, 59difeq12d 4093 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((𝑈𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈𝑐)}))
6152, 60eqtr2d 2766 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐})))
6261fveq2d 6865 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))))
632, 1, 15, 3, 16, 26frlmsslsp 21712 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6427, 28, 29, 63syl3anc 1373 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6562, 64eqtrd 2765 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6644, 65neleqtrrd 2852 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
6766ralrimivva 3181 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
68 oveq2 7398 . . . . . . . 8 (𝑎 = (𝑈𝑐) → (𝑏( ·𝑠𝐹)𝑎) = (𝑏( ·𝑠𝐹)(𝑈𝑐)))
69 sneq 4602 . . . . . . . . . 10 (𝑎 = (𝑈𝑐) → {𝑎} = {(𝑈𝑐)})
7069difeq2d 4092 . . . . . . . . 9 (𝑎 = (𝑈𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈𝑐)}))
7170fveq2d 6865 . . . . . . . 8 (𝑎 = (𝑈𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
7268, 71eleq12d 2823 . . . . . . 7 (𝑎 = (𝑈𝑐) → ((𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7372notbid 318 . . . . . 6 (𝑎 = (𝑈𝑐) → (¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7473ralbidv 3157 . . . . 5 (𝑎 = (𝑈𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7574ralrn 7063 . . . 4 (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
764, 20, 753syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7767, 76mpbird 257 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))
782ovexi 7424 . . 3 𝐹 ∈ V
79 eqid 2730 . . . 4 (Scalar‘𝐹) = (Scalar‘𝐹)
80 eqid 2730 . . . 4 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
81 frlmlbs.j . . . 4 𝐽 = (LBasis‘𝐹)
82 eqid 2730 . . . 4 (0g‘(Scalar‘𝐹)) = (0g‘(Scalar‘𝐹))
833, 79, 25, 80, 81, 15, 82islbs 20990 . . 3 (𝐹 ∈ V → (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))))
8478, 83ax-mp 5 . 2 (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))
855, 24, 77, 84syl3anbrc 1344 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  cdif 3914  wss 3917  {csn 4592  ccnv 5640  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  1-1wf1 6511  cfv 6514  (class class class)co 7390   supp csupp 8142  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Ringcrg 20149  NzRingcnzr 20428  LSpanclspn 20884  LBasisclbs 20988   freeLMod cfrlm 21662   unitVec cuvc 21698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-nzr 20429  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lmhm 20936  df-lbs 20989  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-uvc 21699
This theorem is referenced by:  frlmup3  21716  frlmup4  21717  lmisfree  21758  frlmisfrlm  21764  frlmdim  33614  lindsdom  37615  aacllem  49794
  Copyright terms: Public domain W3C validator