| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | frlmlbs.u | . . . 4
⊢ 𝑈 = (𝑅 unitVec 𝐼) | 
| 2 |  | frlmlbs.f | . . . 4
⊢ 𝐹 = (𝑅 freeLMod 𝐼) | 
| 3 |  | eqid 2736 | . . . 4
⊢
(Base‘𝐹) =
(Base‘𝐹) | 
| 4 | 1, 2, 3 | uvcff 21812 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼⟶(Base‘𝐹)) | 
| 5 | 4 | frnd 6743 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ⊆ (Base‘𝐹)) | 
| 6 |  | suppssdm 8203 | . . . . . 6
⊢ (𝑎 supp (0g‘𝑅)) ⊆ dom 𝑎 | 
| 7 |  | eqid 2736 | . . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 8 | 2, 7, 3 | frlmbasf 21781 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅)) | 
| 9 | 8 | adantll 714 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅)) | 
| 10 | 6, 9 | fssdm 6754 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g‘𝑅)) ⊆ 𝐼) | 
| 11 | 10 | ralrimiva 3145 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g‘𝑅)) ⊆ 𝐼) | 
| 12 |  | rabid2 3469 | . . . 4
⊢
((Base‘𝐹) =
{𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g‘𝑅)) ⊆ 𝐼) | 
| 13 | 11, 12 | sylibr 234 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) | 
| 14 |  | ssid 4005 | . . . 4
⊢ 𝐼 ⊆ 𝐼 | 
| 15 |  | eqid 2736 | . . . . 5
⊢
(LSpan‘𝐹) =
(LSpan‘𝐹) | 
| 16 |  | eqid 2736 | . . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 17 |  | eqid 2736 | . . . . 5
⊢ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} | 
| 18 | 2, 1, 15, 3, 16, 17 | frlmsslsp 21817 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) | 
| 19 | 14, 18 | mp3an3 1451 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) | 
| 20 |  | ffn 6735 | . . . . 5
⊢ (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼) | 
| 21 |  | fnima 6697 | . . . . 5
⊢ (𝑈 Fn 𝐼 → (𝑈 “ 𝐼) = ran 𝑈) | 
| 22 | 4, 20, 21 | 3syl 18 | . . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝑈 “ 𝐼) = ran 𝑈) | 
| 23 | 22 | fveq2d 6909 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = ((LSpan‘𝐹)‘ran 𝑈)) | 
| 24 | 13, 19, 23 | 3eqtr2rd 2783 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹)) | 
| 25 |  | eqid 2736 | . . . . . 6
⊢ (
·𝑠 ‘𝐹) = ( ·𝑠
‘𝐹) | 
| 26 |  | eqid 2736 | . . . . . 6
⊢ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})} | 
| 27 |  | simpll 766 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring) | 
| 28 |  | simplr 768 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝐼 ∈ 𝑉) | 
| 29 |  | difssd 4136 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼) | 
| 30 |  | vsnid 4662 | . . . . . . 7
⊢ 𝑐 ∈ {𝑐} | 
| 31 |  | snssi 4807 | . . . . . . . . 9
⊢ (𝑐 ∈ 𝐼 → {𝑐} ⊆ 𝐼) | 
| 32 | 31 | ad2antrl 728 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼) | 
| 33 |  | dfss4 4268 | . . . . . . . 8
⊢ ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐}) | 
| 34 | 32, 33 | sylib 218 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐}) | 
| 35 | 30, 34 | eleqtrrid 2847 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐}))) | 
| 36 | 2 | frlmsca 21774 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 = (Scalar‘𝐹)) | 
| 37 | 36 | fveq2d 6909 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) | 
| 38 | 36 | fveq2d 6909 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g‘𝑅) =
(0g‘(Scalar‘𝐹))) | 
| 39 | 38 | sneqd 4637 | . . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → {(0g‘𝑅)} =
{(0g‘(Scalar‘𝐹))}) | 
| 40 | 37, 39 | difeq12d 4126 | . . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((Base‘𝑅) ∖ {(0g‘𝑅)}) =
((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))})) | 
| 41 | 40 | eleq2d 2826 | . . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) | 
| 42 | 41 | biimpar 477 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)})) | 
| 43 | 42 | adantrl 716 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)})) | 
| 44 | 2, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43 | frlmssuvc2 21816 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) | 
| 45 | 16, 7 | ringelnzr 20524 | . . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖
{(0g‘𝑅)}))
→ 𝑅 ∈
NzRing) | 
| 46 | 27, 43, 45 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing) | 
| 47 | 1, 2, 3 | uvcf1 21813 | . . . . . . . . . 10
⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼–1-1→(Base‘𝐹)) | 
| 48 | 46, 28, 47 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼–1-1→(Base‘𝐹)) | 
| 49 |  | df-f1 6565 | . . . . . . . . . 10
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun ◡𝑈)) | 
| 50 | 49 | simprbi 496 | . . . . . . . . 9
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) → Fun ◡𝑈) | 
| 51 |  | imadif 6649 | . . . . . . . . 9
⊢ (Fun
◡𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐}))) | 
| 52 | 48, 50, 51 | 3syl 18 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐}))) | 
| 53 |  | f1fn 6804 | . . . . . . . . . 10
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) → 𝑈 Fn 𝐼) | 
| 54 | 48, 53, 21 | 3syl 18 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ 𝐼) = ran 𝑈) | 
| 55 | 48, 53 | syl 17 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼) | 
| 56 |  | simprl 770 | . . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ 𝐼) | 
| 57 |  | fnsnfv 6987 | . . . . . . . . . . 11
⊢ ((𝑈 Fn 𝐼 ∧ 𝑐 ∈ 𝐼) → {(𝑈‘𝑐)} = (𝑈 “ {𝑐})) | 
| 58 | 55, 56, 57 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → {(𝑈‘𝑐)} = (𝑈 “ {𝑐})) | 
| 59 | 58 | eqcomd 2742 | . . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈‘𝑐)}) | 
| 60 | 54, 59 | difeq12d 4126 | . . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈‘𝑐)})) | 
| 61 | 52, 60 | eqtr2d 2777 | . . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈‘𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐}))) | 
| 62 | 61 | fveq2d 6909 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐})))) | 
| 63 | 2, 1, 15, 3, 16, 26 | frlmsslsp 21817 | . . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) | 
| 64 | 27, 28, 29, 63 | syl3anc 1372 | . . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) | 
| 65 | 62, 64 | eqtrd 2776 | . . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) | 
| 66 | 44, 65 | neleqtrrd 2863 | . . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) | 
| 67 | 66 | ralrimivva 3201 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) | 
| 68 |  | oveq2 7440 | . . . . . . . 8
⊢ (𝑎 = (𝑈‘𝑐) → (𝑏( ·𝑠
‘𝐹)𝑎) = (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐))) | 
| 69 |  | sneq 4635 | . . . . . . . . . 10
⊢ (𝑎 = (𝑈‘𝑐) → {𝑎} = {(𝑈‘𝑐)}) | 
| 70 | 69 | difeq2d 4125 | . . . . . . . . 9
⊢ (𝑎 = (𝑈‘𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈‘𝑐)})) | 
| 71 | 70 | fveq2d 6909 | . . . . . . . 8
⊢ (𝑎 = (𝑈‘𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) | 
| 72 | 68, 71 | eleq12d 2834 | . . . . . . 7
⊢ (𝑎 = (𝑈‘𝑐) → ((𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) | 
| 73 | 72 | notbid 318 | . . . . . 6
⊢ (𝑎 = (𝑈‘𝑐) → (¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) | 
| 74 | 73 | ralbidv 3177 | . . . . 5
⊢ (𝑎 = (𝑈‘𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) | 
| 75 | 74 | ralrn 7107 | . . . 4
⊢ (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) | 
| 76 | 4, 20, 75 | 3syl 18 | . . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) | 
| 77 | 67, 76 | mpbird 257 | . 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))) | 
| 78 | 2 | ovexi 7466 | . . 3
⊢ 𝐹 ∈ V | 
| 79 |  | eqid 2736 | . . . 4
⊢
(Scalar‘𝐹) =
(Scalar‘𝐹) | 
| 80 |  | eqid 2736 | . . . 4
⊢
(Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) | 
| 81 |  | frlmlbs.j | . . . 4
⊢ 𝐽 = (LBasis‘𝐹) | 
| 82 |  | eqid 2736 | . . . 4
⊢
(0g‘(Scalar‘𝐹)) =
(0g‘(Scalar‘𝐹)) | 
| 83 | 3, 79, 25, 80, 81, 15, 82 | islbs 21076 | . . 3
⊢ (𝐹 ∈ V → (ran 𝑈 ∈ 𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))) | 
| 84 | 78, 83 | ax-mp 5 | . 2
⊢ (ran
𝑈 ∈ 𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))) | 
| 85 | 5, 24, 77, 84 | syl3anbrc 1343 | 1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) |