MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   GIF version

Theorem frlmlbs 20611
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmlbs.u 𝑈 = (𝑅 unitVec 𝐼)
frlmlbs.j 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
frlmlbs ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)

Proof of Theorem frlmlbs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
2 frlmlbs.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
3 eqid 2793 . . . 4 (Base‘𝐹) = (Base‘𝐹)
41, 2, 3uvcff 20605 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼⟶(Base‘𝐹))
54frnd 6381 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈 ⊆ (Base‘𝐹))
6 suppssdm 7685 . . . . . 6 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
7 eqid 2793 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
82, 7, 3frlmbasf 20574 . . . . . . 7 ((𝐼𝑉𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
98adantll 710 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
106, 9fssdm 6390 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g𝑅)) ⊆ 𝐼)
1110ralrimiva 3147 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
12 rabid2 3337 . . . 4 ((Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
1311, 12sylibr 235 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
14 ssid 3905 . . . 4 𝐼𝐼
15 eqid 2793 . . . . 5 (LSpan‘𝐹) = (LSpan‘𝐹)
16 eqid 2793 . . . . 5 (0g𝑅) = (0g𝑅)
17 eqid 2793 . . . . 5 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼}
182, 1, 15, 3, 16, 17frlmsslsp 20610 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐼𝐼) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
1914, 18mp3an3 1440 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
20 ffn 6374 . . . . 5 (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼)
21 fnima 6338 . . . . 5 (𝑈 Fn 𝐼 → (𝑈𝐼) = ran 𝑈)
224, 20, 213syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑈𝐼) = ran 𝑈)
2322fveq2d 6534 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = ((LSpan‘𝐹)‘ran 𝑈))
2413, 19, 233eqtr2rd 2836 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
25 eqid 2793 . . . . . 6 ( ·𝑠𝐹) = ( ·𝑠𝐹)
26 eqid 2793 . . . . . 6 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})}
27 simpll 763 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring)
28 simplr 765 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝐼𝑉)
29 difssd 4025 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼)
30 vsnid 4501 . . . . . . 7 𝑐 ∈ {𝑐}
31 snssi 4642 . . . . . . . . 9 (𝑐𝐼 → {𝑐} ⊆ 𝐼)
3231ad2antrl 724 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼)
33 dfss4 4150 . . . . . . . 8 ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3432, 33sylib 219 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3530, 34syl5eleqr 2888 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐})))
362frlmsca 20567 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3736fveq2d 6534 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
3836fveq2d 6534 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g𝑅) = (0g‘(Scalar‘𝐹)))
3938sneqd 4478 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → {(0g𝑅)} = {(0g‘(Scalar‘𝐹))})
4037, 39difeq12d 4016 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))
4140eleq2d 2866 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})))
4241biimpar 478 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
4342adantrl 712 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
442, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43frlmssuvc2 20609 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
4516, 7ringelnzr 19716 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑅 ∈ NzRing)
4627, 43, 45syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing)
471, 2, 3uvcf1 20606 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → 𝑈:𝐼1-1→(Base‘𝐹))
4846, 28, 47syl2anc 584 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼1-1→(Base‘𝐹))
49 df-f1 6222 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun 𝑈))
5049simprbi 497 . . . . . . . . 9 (𝑈:𝐼1-1→(Base‘𝐹) → Fun 𝑈)
51 imadif 6300 . . . . . . . . 9 (Fun 𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
5248, 50, 513syl 18 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
53 f1fn 6436 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) → 𝑈 Fn 𝐼)
5448, 53, 213syl 18 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈𝐼) = ran 𝑈)
5548, 53syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼)
56 simprl 767 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐𝐼)
57 fnsnfv 6602 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝑐𝐼) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5855, 56, 57syl2anc 584 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5958eqcomd 2799 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈𝑐)})
6054, 59difeq12d 4016 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((𝑈𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈𝑐)}))
6152, 60eqtr2d 2830 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐})))
6261fveq2d 6534 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))))
632, 1, 15, 3, 16, 26frlmsslsp 20610 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6427, 28, 29, 63syl3anc 1362 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6562, 64eqtrd 2829 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6644, 65neleqtrrd 2903 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
6766ralrimivva 3156 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
68 oveq2 7015 . . . . . . . 8 (𝑎 = (𝑈𝑐) → (𝑏( ·𝑠𝐹)𝑎) = (𝑏( ·𝑠𝐹)(𝑈𝑐)))
69 sneq 4476 . . . . . . . . . 10 (𝑎 = (𝑈𝑐) → {𝑎} = {(𝑈𝑐)})
7069difeq2d 4015 . . . . . . . . 9 (𝑎 = (𝑈𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈𝑐)}))
7170fveq2d 6534 . . . . . . . 8 (𝑎 = (𝑈𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
7268, 71eleq12d 2875 . . . . . . 7 (𝑎 = (𝑈𝑐) → ((𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7372notbid 319 . . . . . 6 (𝑎 = (𝑈𝑐) → (¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7473ralbidv 3162 . . . . 5 (𝑎 = (𝑈𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7574ralrn 6710 . . . 4 (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
764, 20, 753syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7767, 76mpbird 258 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))
782ovexi 7040 . . 3 𝐹 ∈ V
79 eqid 2793 . . . 4 (Scalar‘𝐹) = (Scalar‘𝐹)
80 eqid 2793 . . . 4 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
81 frlmlbs.j . . . 4 𝐽 = (LBasis‘𝐹)
82 eqid 2793 . . . 4 (0g‘(Scalar‘𝐹)) = (0g‘(Scalar‘𝐹))
833, 79, 25, 80, 81, 15, 82islbs 19526 . . 3 (𝐹 ∈ V → (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))))
8478, 83ax-mp 5 . 2 (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))
855, 24, 77, 84syl3anbrc 1334 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wral 3103  {crab 3107  Vcvv 3432  cdif 3851  wss 3854  {csn 4466  ccnv 5434  ran crn 5436  cima 5438  Fun wfun 6211   Fn wfn 6212  wf 6213  1-1wf1 6214  cfv 6217  (class class class)co 7007   supp csupp 7672  Basecbs 16300  Scalarcsca 16385   ·𝑠 cvsca 16386  0gc0g 16530  Ringcrg 18975  LSpanclspn 19421  LBasisclbs 19524  NzRingcnzr 19707   freeLMod cfrlm 20560   unitVec cuvc 20596
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-oadd 7948  df-er 8130  df-map 8249  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-sup 8742  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-fz 12732  df-fzo 12873  df-seq 13208  df-hash 13529  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-hom 16406  df-cco 16407  df-0g 16532  df-gsum 16533  df-prds 16538  df-pws 16540  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-mhm 17762  df-submnd 17763  df-grp 17852  df-minusg 17853  df-sbg 17854  df-mulg 17970  df-subg 18018  df-ghm 18085  df-cntz 18176  df-cmn 18623  df-abl 18624  df-mgp 18918  df-ur 18930  df-ring 18977  df-subrg 19211  df-lmod 19314  df-lss 19382  df-lsp 19422  df-lmhm 19472  df-lbs 19525  df-sra 19622  df-rgmod 19623  df-nzr 19708  df-dsmm 20546  df-frlm 20561  df-uvc 20597
This theorem is referenced by:  frlmup3  20614  frlmup4  20615  lmisfree  20656  frlmisfrlm  20662  frlmdim  30568  lindsdom  34363  aacllem  44336
  Copyright terms: Public domain W3C validator