MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frlmlbs Structured version   Visualization version   GIF version

Theorem frlmlbs 20941
Description: The unit vectors comprise a basis for a free module. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Proof shortened by AV, 21-Jul-2019.)
Hypotheses
Ref Expression
frlmlbs.f 𝐹 = (𝑅 freeLMod 𝐼)
frlmlbs.u 𝑈 = (𝑅 unitVec 𝐼)
frlmlbs.j 𝐽 = (LBasis‘𝐹)
Assertion
Ref Expression
frlmlbs ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)

Proof of Theorem frlmlbs
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frlmlbs.u . . . 4 𝑈 = (𝑅 unitVec 𝐼)
2 frlmlbs.f . . . 4 𝐹 = (𝑅 freeLMod 𝐼)
3 eqid 2821 . . . 4 (Base‘𝐹) = (Base‘𝐹)
41, 2, 3uvcff 20935 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑈:𝐼⟶(Base‘𝐹))
54frnd 6521 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈 ⊆ (Base‘𝐹))
6 suppssdm 7843 . . . . . 6 (𝑎 supp (0g𝑅)) ⊆ dom 𝑎
7 eqid 2821 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
82, 7, 3frlmbasf 20904 . . . . . . 7 ((𝐼𝑉𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
98adantll 712 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅))
106, 9fssdm 6530 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g𝑅)) ⊆ 𝐼)
1110ralrimiva 3182 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
12 rabid2 3381 . . . 4 ((Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g𝑅)) ⊆ 𝐼)
1311, 12sylibr 236 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
14 ssid 3989 . . . 4 𝐼𝐼
15 eqid 2821 . . . . 5 (LSpan‘𝐹) = (LSpan‘𝐹)
16 eqid 2821 . . . . 5 (0g𝑅) = (0g𝑅)
17 eqid 2821 . . . . 5 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼}
182, 1, 15, 3, 16, 17frlmsslsp 20940 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉𝐼𝐼) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
1914, 18mp3an3 1446 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ 𝐼})
20 ffn 6514 . . . . 5 (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼)
21 fnima 6478 . . . . 5 (𝑈 Fn 𝐼 → (𝑈𝐼) = ran 𝑈)
224, 20, 213syl 18 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑈𝐼) = ran 𝑈)
2322fveq2d 6674 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘(𝑈𝐼)) = ((LSpan‘𝐹)‘ran 𝑈))
2413, 19, 233eqtr2rd 2863 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹))
25 eqid 2821 . . . . . 6 ( ·𝑠𝐹) = ( ·𝑠𝐹)
26 eqid 2821 . . . . . 6 {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})}
27 simpll 765 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring)
28 simplr 767 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝐼𝑉)
29 difssd 4109 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼)
30 vsnid 4602 . . . . . . 7 𝑐 ∈ {𝑐}
31 snssi 4741 . . . . . . . . 9 (𝑐𝐼 → {𝑐} ⊆ 𝐼)
3231ad2antrl 726 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼)
33 dfss4 4235 . . . . . . . 8 ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3432, 33sylib 220 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐})
3530, 34eleqtrrid 2920 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐})))
362frlmsca 20897 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → 𝑅 = (Scalar‘𝐹))
3736fveq2d 6674 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹)))
3836fveq2d 6674 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (0g𝑅) = (0g‘(Scalar‘𝐹)))
3938sneqd 4579 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → {(0g𝑅)} = {(0g‘(Scalar‘𝐹))})
4037, 39difeq12d 4100 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ((Base‘𝑅) ∖ {(0g𝑅)}) = ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))
4140eleq2d 2898 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})))
4241biimpar 480 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
4342adantrl 714 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)}))
442, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43frlmssuvc2 20939 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
4516, 7ringelnzr 20039 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖ {(0g𝑅)})) → 𝑅 ∈ NzRing)
4627, 43, 45syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing)
471, 2, 3uvcf1 20936 . . . . . . . . . 10 ((𝑅 ∈ NzRing ∧ 𝐼𝑉) → 𝑈:𝐼1-1→(Base‘𝐹))
4846, 28, 47syl2anc 586 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼1-1→(Base‘𝐹))
49 df-f1 6360 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun 𝑈))
5049simprbi 499 . . . . . . . . 9 (𝑈:𝐼1-1→(Base‘𝐹) → Fun 𝑈)
51 imadif 6438 . . . . . . . . 9 (Fun 𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
5248, 50, 513syl 18 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈𝐼) ∖ (𝑈 “ {𝑐})))
53 f1fn 6576 . . . . . . . . . 10 (𝑈:𝐼1-1→(Base‘𝐹) → 𝑈 Fn 𝐼)
5448, 53, 213syl 18 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈𝐼) = ran 𝑈)
5548, 53syl 17 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼)
56 simprl 769 . . . . . . . . . . 11 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → 𝑐𝐼)
57 fnsnfv 6743 . . . . . . . . . . 11 ((𝑈 Fn 𝐼𝑐𝐼) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5855, 56, 57syl2anc 586 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → {(𝑈𝑐)} = (𝑈 “ {𝑐}))
5958eqcomd 2827 . . . . . . . . 9 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈𝑐)})
6054, 59difeq12d 4100 . . . . . . . 8 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((𝑈𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈𝑐)}))
6152, 60eqtr2d 2857 . . . . . . 7 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐})))
6261fveq2d 6674 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))))
632, 1, 15, 3, 16, 26frlmsslsp 20940 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝐼𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6427, 28, 29, 63syl3anc 1367 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6562, 64eqtrd 2856 . . . . 5 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g𝑅)) ⊆ (𝐼 ∖ {𝑐})})
6644, 65neleqtrrd 2935 . . . 4 (((𝑅 ∈ Ring ∧ 𝐼𝑉) ∧ (𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
6766ralrimivva 3191 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
68 oveq2 7164 . . . . . . . 8 (𝑎 = (𝑈𝑐) → (𝑏( ·𝑠𝐹)𝑎) = (𝑏( ·𝑠𝐹)(𝑈𝑐)))
69 sneq 4577 . . . . . . . . . 10 (𝑎 = (𝑈𝑐) → {𝑎} = {(𝑈𝑐)})
7069difeq2d 4099 . . . . . . . . 9 (𝑎 = (𝑈𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈𝑐)}))
7170fveq2d 6674 . . . . . . . 8 (𝑎 = (𝑈𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)})))
7268, 71eleq12d 2907 . . . . . . 7 (𝑎 = (𝑈𝑐) → ((𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7372notbid 320 . . . . . 6 (𝑎 = (𝑈𝑐) → (¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7473ralbidv 3197 . . . . 5 (𝑎 = (𝑈𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7574ralrn 6854 . . . 4 (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
764, 20, 753syl 18 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → (∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐𝐼𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)(𝑈𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈𝑐)}))))
7767, 76mpbird 259 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))
782ovexi 7190 . . 3 𝐹 ∈ V
79 eqid 2821 . . . 4 (Scalar‘𝐹) = (Scalar‘𝐹)
80 eqid 2821 . . . 4 (Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹))
81 frlmlbs.j . . . 4 𝐽 = (LBasis‘𝐹)
82 eqid 2821 . . . 4 (0g‘(Scalar‘𝐹)) = (0g‘(Scalar‘𝐹))
833, 79, 25, 80, 81, 15, 82islbs 19848 . . 3 (𝐹 ∈ V → (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))))
8478, 83ax-mp 5 . 2 (ran 𝑈𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖ {(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))
855, 24, 77, 84syl3anbrc 1339 1 ((𝑅 ∈ Ring ∧ 𝐼𝑉) → ran 𝑈𝐽)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  {crab 3142  Vcvv 3494  cdif 3933  wss 3936  {csn 4567  ccnv 5554  ran crn 5556  cima 5558  Fun wfun 6349   Fn wfn 6350  wf 6351  1-1wf1 6352  cfv 6355  (class class class)co 7156   supp csupp 7830  Basecbs 16483  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  Ringcrg 19297  LSpanclspn 19743  LBasisclbs 19846  NzRingcnzr 20030   freeLMod cfrlm 20890   unitVec cuvc 20926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lbs 19847  df-sra 19944  df-rgmod 19945  df-nzr 20031  df-dsmm 20876  df-frlm 20891  df-uvc 20927
This theorem is referenced by:  frlmup3  20944  frlmup4  20945  lmisfree  20986  frlmisfrlm  20992  frlmdim  31009  lindsdom  34901  aacllem  44922
  Copyright terms: Public domain W3C validator