| Step | Hyp | Ref
| Expression |
| 1 | | frlmlbs.u |
. . . 4
⊢ 𝑈 = (𝑅 unitVec 𝐼) |
| 2 | | frlmlbs.f |
. . . 4
⊢ 𝐹 = (𝑅 freeLMod 𝐼) |
| 3 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐹) =
(Base‘𝐹) |
| 4 | 1, 2, 3 | uvcff 21756 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼⟶(Base‘𝐹)) |
| 5 | 4 | frnd 6719 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ⊆ (Base‘𝐹)) |
| 6 | | suppssdm 8181 |
. . . . . 6
⊢ (𝑎 supp (0g‘𝑅)) ⊆ dom 𝑎 |
| 7 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 8 | 2, 7, 3 | frlmbasf 21725 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅)) |
| 9 | 8 | adantll 714 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → 𝑎:𝐼⟶(Base‘𝑅)) |
| 10 | 6, 9 | fssdm 6730 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑎 ∈ (Base‘𝐹)) → (𝑎 supp (0g‘𝑅)) ⊆ 𝐼) |
| 11 | 10 | ralrimiva 3133 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g‘𝑅)) ⊆ 𝐼) |
| 12 | | rabid2 3454 |
. . . 4
⊢
((Base‘𝐹) =
{𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} ↔ ∀𝑎 ∈ (Base‘𝐹)(𝑎 supp (0g‘𝑅)) ⊆ 𝐼) |
| 13 | 11, 12 | sylibr 234 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Base‘𝐹) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) |
| 14 | | ssid 3986 |
. . . 4
⊢ 𝐼 ⊆ 𝐼 |
| 15 | | eqid 2736 |
. . . . 5
⊢
(LSpan‘𝐹) =
(LSpan‘𝐹) |
| 16 | | eqid 2736 |
. . . . 5
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 17 | | eqid 2736 |
. . . . 5
⊢ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼} |
| 18 | 2, 1, 15, 3, 16, 17 | frlmsslsp 21761 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ 𝐼 ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) |
| 19 | 14, 18 | mp3an3 1452 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ 𝐼}) |
| 20 | | ffn 6711 |
. . . . 5
⊢ (𝑈:𝐼⟶(Base‘𝐹) → 𝑈 Fn 𝐼) |
| 21 | | fnima 6673 |
. . . . 5
⊢ (𝑈 Fn 𝐼 → (𝑈 “ 𝐼) = ran 𝑈) |
| 22 | 4, 20, 21 | 3syl 18 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝑈 “ 𝐼) = ran 𝑈) |
| 23 | 22 | fveq2d 6885 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘(𝑈 “ 𝐼)) = ((LSpan‘𝐹)‘ran 𝑈)) |
| 24 | 13, 19, 23 | 3eqtr2rd 2778 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹)) |
| 25 | | eqid 2736 |
. . . . . 6
⊢ (
·𝑠 ‘𝐹) = ( ·𝑠
‘𝐹) |
| 26 | | eqid 2736 |
. . . . . 6
⊢ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})} = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})} |
| 27 | | simpll 766 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ Ring) |
| 28 | | simplr 768 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝐼 ∈ 𝑉) |
| 29 | | difssd 4117 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ {𝑐}) ⊆ 𝐼) |
| 30 | | vsnid 4644 |
. . . . . . 7
⊢ 𝑐 ∈ {𝑐} |
| 31 | | snssi 4789 |
. . . . . . . . 9
⊢ (𝑐 ∈ 𝐼 → {𝑐} ⊆ 𝐼) |
| 32 | 31 | ad2antrl 728 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → {𝑐} ⊆ 𝐼) |
| 33 | | dfss4 4249 |
. . . . . . . 8
⊢ ({𝑐} ⊆ 𝐼 ↔ (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐}) |
| 34 | 32, 33 | sylib 218 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝐼 ∖ (𝐼 ∖ {𝑐})) = {𝑐}) |
| 35 | 30, 34 | eleqtrrid 2842 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ (𝐼 ∖ (𝐼 ∖ {𝑐}))) |
| 36 | 2 | frlmsca 21718 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → 𝑅 = (Scalar‘𝐹)) |
| 37 | 36 | fveq2d 6885 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (Base‘𝑅) = (Base‘(Scalar‘𝐹))) |
| 38 | 36 | fveq2d 6885 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (0g‘𝑅) =
(0g‘(Scalar‘𝐹))) |
| 39 | 38 | sneqd 4618 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → {(0g‘𝑅)} =
{(0g‘(Scalar‘𝐹))}) |
| 40 | 37, 39 | difeq12d 4107 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ((Base‘𝑅) ∖ {(0g‘𝑅)}) =
((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))})) |
| 41 | 40 | eleq2d 2821 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)}) ↔ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) |
| 42 | 41 | biimpar 477 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))})) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
| 43 | 42 | adantrl 716 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑏 ∈ ((Base‘𝑅) ∖ {(0g‘𝑅)})) |
| 44 | 2, 1, 3, 7, 25, 16, 26, 27, 28, 29, 35, 43 | frlmssuvc2 21760 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) |
| 45 | 16, 7 | ringelnzr 20488 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝑏 ∈ ((Base‘𝑅) ∖
{(0g‘𝑅)}))
→ 𝑅 ∈
NzRing) |
| 46 | 27, 43, 45 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑅 ∈ NzRing) |
| 47 | 1, 2, 3 | uvcf1 21757 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ NzRing ∧ 𝐼 ∈ 𝑉) → 𝑈:𝐼–1-1→(Base‘𝐹)) |
| 48 | 46, 28, 47 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑈:𝐼–1-1→(Base‘𝐹)) |
| 49 | | df-f1 6541 |
. . . . . . . . . 10
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) ↔ (𝑈:𝐼⟶(Base‘𝐹) ∧ Fun ◡𝑈)) |
| 50 | 49 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) → Fun ◡𝑈) |
| 51 | | imadif 6625 |
. . . . . . . . 9
⊢ (Fun
◡𝑈 → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐}))) |
| 52 | 48, 50, 51 | 3syl 18 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ (𝐼 ∖ {𝑐})) = ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐}))) |
| 53 | | f1fn 6780 |
. . . . . . . . . 10
⊢ (𝑈:𝐼–1-1→(Base‘𝐹) → 𝑈 Fn 𝐼) |
| 54 | 48, 53, 21 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ 𝐼) = ran 𝑈) |
| 55 | 48, 53 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑈 Fn 𝐼) |
| 56 | | simprl 770 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → 𝑐 ∈ 𝐼) |
| 57 | | fnsnfv 6963 |
. . . . . . . . . . 11
⊢ ((𝑈 Fn 𝐼 ∧ 𝑐 ∈ 𝐼) → {(𝑈‘𝑐)} = (𝑈 “ {𝑐})) |
| 58 | 55, 56, 57 | syl2anc 584 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → {(𝑈‘𝑐)} = (𝑈 “ {𝑐})) |
| 59 | 58 | eqcomd 2742 |
. . . . . . . . 9
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (𝑈 “ {𝑐}) = {(𝑈‘𝑐)}) |
| 60 | 54, 59 | difeq12d 4107 |
. . . . . . . 8
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((𝑈 “ 𝐼) ∖ (𝑈 “ {𝑐})) = (ran 𝑈 ∖ {(𝑈‘𝑐)})) |
| 61 | 52, 60 | eqtr2d 2772 |
. . . . . . 7
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → (ran 𝑈 ∖ {(𝑈‘𝑐)}) = (𝑈 “ (𝐼 ∖ {𝑐}))) |
| 62 | 61 | fveq2d 6885 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})) = ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐})))) |
| 63 | 2, 1, 15, 3, 16, 26 | frlmsslsp 21761 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉 ∧ (𝐼 ∖ {𝑐}) ⊆ 𝐼) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) |
| 64 | 27, 28, 29, 63 | syl3anc 1373 |
. . . . . 6
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(𝑈 “ (𝐼 ∖ {𝑐}))) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) |
| 65 | 62, 64 | eqtrd 2771 |
. . . . 5
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})) = {𝑎 ∈ (Base‘𝐹) ∣ (𝑎 supp (0g‘𝑅)) ⊆ (𝐼 ∖ {𝑐})}) |
| 66 | 44, 65 | neleqtrrd 2858 |
. . . 4
⊢ (((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) ∧ (𝑐 ∈ 𝐼 ∧ 𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}))) → ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) |
| 67 | 66 | ralrimivva 3188 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) |
| 68 | | oveq2 7418 |
. . . . . . . 8
⊢ (𝑎 = (𝑈‘𝑐) → (𝑏( ·𝑠
‘𝐹)𝑎) = (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐))) |
| 69 | | sneq 4616 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑈‘𝑐) → {𝑎} = {(𝑈‘𝑐)}) |
| 70 | 69 | difeq2d 4106 |
. . . . . . . . 9
⊢ (𝑎 = (𝑈‘𝑐) → (ran 𝑈 ∖ {𝑎}) = (ran 𝑈 ∖ {(𝑈‘𝑐)})) |
| 71 | 70 | fveq2d 6885 |
. . . . . . . 8
⊢ (𝑎 = (𝑈‘𝑐) → ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) = ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)}))) |
| 72 | 68, 71 | eleq12d 2829 |
. . . . . . 7
⊢ (𝑎 = (𝑈‘𝑐) → ((𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) |
| 73 | 72 | notbid 318 |
. . . . . 6
⊢ (𝑎 = (𝑈‘𝑐) → (¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) |
| 74 | 73 | ralbidv 3164 |
. . . . 5
⊢ (𝑎 = (𝑈‘𝑐) → (∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) |
| 75 | 74 | ralrn 7083 |
. . . 4
⊢ (𝑈 Fn 𝐼 → (∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) |
| 76 | 4, 20, 75 | 3syl 18 |
. . 3
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → (∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})) ↔ ∀𝑐 ∈ 𝐼 ∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)(𝑈‘𝑐)) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {(𝑈‘𝑐)})))) |
| 77 | 67, 76 | mpbird 257 |
. 2
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))) |
| 78 | 2 | ovexi 7444 |
. . 3
⊢ 𝐹 ∈ V |
| 79 | | eqid 2736 |
. . . 4
⊢
(Scalar‘𝐹) =
(Scalar‘𝐹) |
| 80 | | eqid 2736 |
. . . 4
⊢
(Base‘(Scalar‘𝐹)) = (Base‘(Scalar‘𝐹)) |
| 81 | | frlmlbs.j |
. . . 4
⊢ 𝐽 = (LBasis‘𝐹) |
| 82 | | eqid 2736 |
. . . 4
⊢
(0g‘(Scalar‘𝐹)) =
(0g‘(Scalar‘𝐹)) |
| 83 | 3, 79, 25, 80, 81, 15, 82 | islbs 21039 |
. . 3
⊢ (𝐹 ∈ V → (ran 𝑈 ∈ 𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎}))))) |
| 84 | 78, 83 | ax-mp 5 |
. 2
⊢ (ran
𝑈 ∈ 𝐽 ↔ (ran 𝑈 ⊆ (Base‘𝐹) ∧ ((LSpan‘𝐹)‘ran 𝑈) = (Base‘𝐹) ∧ ∀𝑎 ∈ ran 𝑈∀𝑏 ∈ ((Base‘(Scalar‘𝐹)) ∖
{(0g‘(Scalar‘𝐹))}) ¬ (𝑏( ·𝑠
‘𝐹)𝑎) ∈ ((LSpan‘𝐹)‘(ran 𝑈 ∖ {𝑎})))) |
| 85 | 5, 24, 77, 84 | syl3anbrc 1344 |
1
⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑉) → ran 𝑈 ∈ 𝐽) |