MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1elima Structured version   Visualization version   GIF version

Theorem f1elima 7300
Description: Membership in the image of a 1-1 map. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
f1elima ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))

Proof of Theorem f1elima
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 f1fn 6818 . . . 4 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
2 fvelimab 6994 . . . 4 ((𝐹 Fn 𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
31, 2sylan 579 . . 3 ((𝐹:𝐴1-1𝐵𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
433adant2 1131 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋)))
5 ssel 4002 . . . . . . . 8 (𝑌𝐴 → (𝑧𝑌𝑧𝐴))
65impac 552 . . . . . . 7 ((𝑌𝐴𝑧𝑌) → (𝑧𝐴𝑧𝑌))
7 f1fveq 7299 . . . . . . . . . . . 12 ((𝐹:𝐴1-1𝐵 ∧ (𝑧𝐴𝑋𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
87ancom2s 649 . . . . . . . . . . 11 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) ↔ 𝑧 = 𝑋))
98biimpd 229 . . . . . . . . . 10 ((𝐹:𝐴1-1𝐵 ∧ (𝑋𝐴𝑧𝐴)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
109anassrs 467 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) → ((𝐹𝑧) = (𝐹𝑋) → 𝑧 = 𝑋))
11 eleq1 2832 . . . . . . . . . 10 (𝑧 = 𝑋 → (𝑧𝑌𝑋𝑌))
1211biimpcd 249 . . . . . . . . 9 (𝑧𝑌 → (𝑧 = 𝑋𝑋𝑌))
1310, 12sylan9 507 . . . . . . . 8 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑧𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1413anasss 466 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑧𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
156, 14sylan2 592 . . . . . 6 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ (𝑌𝐴𝑧𝑌)) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1615anassrs 467 . . . . 5 ((((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) ∧ 𝑧𝑌) → ((𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
1716rexlimdva 3161 . . . 4 (((𝐹:𝐴1-1𝐵𝑋𝐴) ∧ 𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
18173impa 1110 . . 3 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) → 𝑋𝑌))
19 eqid 2740 . . . 4 (𝐹𝑋) = (𝐹𝑋)
20 fveqeq2 6929 . . . . 5 (𝑧 = 𝑋 → ((𝐹𝑧) = (𝐹𝑋) ↔ (𝐹𝑋) = (𝐹𝑋)))
2120rspcev 3635 . . . 4 ((𝑋𝑌 ∧ (𝐹𝑋) = (𝐹𝑋)) → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2219, 21mpan2 690 . . 3 (𝑋𝑌 → ∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋))
2318, 22impbid1 225 . 2 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → (∃𝑧𝑌 (𝐹𝑧) = (𝐹𝑋) ↔ 𝑋𝑌))
244, 23bitrd 279 1 ((𝐹:𝐴1-1𝐵𝑋𝐴𝑌𝐴) → ((𝐹𝑋) ∈ (𝐹𝑌) ↔ 𝑋𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  cima 5703   Fn wfn 6568  1-1wf1 6570  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fv 6581
This theorem is referenced by:  f1imass  7301  domunfican  9389  acndom2  10123  hashf1lem1  14504  f1omvdconj  19488  gsumzaddlem  19963  lindfmm  21870  axcontlem10  29006  trlsegvdeg  30259  ismtyima  37763
  Copyright terms: Public domain W3C validator