MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopf1 Structured version   Visualization version   GIF version

Theorem qtopf1 22875
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
qtopf1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtopf1.2 (𝜑𝐹:𝑋1-1𝑌)
Assertion
Ref Expression
qtopf1 (𝜑𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))

Proof of Theorem qtopf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qtopf1.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 qtopf1.2 . . . 4 (𝜑𝐹:𝑋1-1𝑌)
3 f1fn 6655 . . . 4 (𝐹:𝑋1-1𝑌𝐹 Fn 𝑋)
42, 3syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
5 qtopid 22764 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
61, 4, 5syl2anc 583 . 2 (𝜑𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
7 f1f1orn 6711 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋1-1-onto→ran 𝐹)
8 f1ocnv 6712 . . . 4 (𝐹:𝑋1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝑋)
9 f1of 6700 . . . 4 (𝐹:ran 𝐹1-1-onto𝑋𝐹:ran 𝐹𝑋)
102, 7, 8, 94syl 19 . . 3 (𝜑𝐹:ran 𝐹𝑋)
11 imacnvcnv 6098 . . . . 5 (𝐹𝑥) = (𝐹𝑥)
12 imassrn 5969 . . . . . . 7 (𝐹𝑥) ⊆ ran 𝐹
1312a1i 11 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ⊆ ran 𝐹)
142adantr 480 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹:𝑋1-1𝑌)
15 toponss 21984 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
161, 15sylan 579 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝑋)
17 f1imacnv 6716 . . . . . . . 8 ((𝐹:𝑋1-1𝑌𝑥𝑋) → (𝐹 “ (𝐹𝑥)) = 𝑥)
1814, 16, 17syl2anc 583 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹 “ (𝐹𝑥)) = 𝑥)
19 simpr 484 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝐽)
2018, 19eqeltrd 2839 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹 “ (𝐹𝑥)) ∈ 𝐽)
21 dffn4 6678 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
224, 21sylib 217 . . . . . . . 8 (𝜑𝐹:𝑋onto→ran 𝐹)
23 elqtop3 22762 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
241, 22, 23syl2anc 583 . . . . . . 7 (𝜑 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
2524adantr 480 . . . . . 6 ((𝜑𝑥𝐽) → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
2613, 20, 25mpbir2and 709 . . . . 5 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
2711, 26eqeltrid 2843 . . . 4 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
2827ralrimiva 3107 . . 3 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
29 qtoptopon 22763 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
301, 22, 29syl2anc 583 . . . 4 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
31 iscn 22294 . . . 4 (((𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽) ↔ (𝐹:ran 𝐹𝑋 ∧ ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))))
3230, 1, 31syl2anc 583 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽) ↔ (𝐹:ran 𝐹𝑋 ∧ ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))))
3310, 28, 32mpbir2and 709 . 2 (𝜑𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽))
34 ishmeo 22818 . 2 (𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)) ↔ (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽)))
356, 33, 34sylanbrc 582 1 (𝜑𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255   qTop cqtop 17131  TopOnctopon 21967   Cn ccn 22283  Homeochmeo 22812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cn 22286  df-hmeo 22814
This theorem is referenced by:  t0kq  22877
  Copyright terms: Public domain W3C validator