MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopf1 Structured version   Visualization version   GIF version

Theorem qtopf1 22426
Description: If a quotient map is injective, then it is a homeomorphism. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
qtopf1.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
qtopf1.2 (𝜑𝐹:𝑋1-1𝑌)
Assertion
Ref Expression
qtopf1 (𝜑𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))

Proof of Theorem qtopf1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 qtopf1.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 qtopf1.2 . . . 4 (𝜑𝐹:𝑋1-1𝑌)
3 f1fn 6578 . . . 4 (𝐹:𝑋1-1𝑌𝐹 Fn 𝑋)
42, 3syl 17 . . 3 (𝜑𝐹 Fn 𝑋)
5 qtopid 22315 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
61, 4, 5syl2anc 586 . 2 (𝜑𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
7 f1f1orn 6628 . . . 4 (𝐹:𝑋1-1𝑌𝐹:𝑋1-1-onto→ran 𝐹)
8 f1ocnv 6629 . . . 4 (𝐹:𝑋1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto𝑋)
9 f1of 6617 . . . 4 (𝐹:ran 𝐹1-1-onto𝑋𝐹:ran 𝐹𝑋)
102, 7, 8, 94syl 19 . . 3 (𝜑𝐹:ran 𝐹𝑋)
11 imacnvcnv 6065 . . . . 5 (𝐹𝑥) = (𝐹𝑥)
12 imassrn 5942 . . . . . . 7 (𝐹𝑥) ⊆ ran 𝐹
1312a1i 11 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ⊆ ran 𝐹)
142adantr 483 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝐹:𝑋1-1𝑌)
15 toponss 21537 . . . . . . . . 9 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑥𝐽) → 𝑥𝑋)
161, 15sylan 582 . . . . . . . 8 ((𝜑𝑥𝐽) → 𝑥𝑋)
17 f1imacnv 6633 . . . . . . . 8 ((𝐹:𝑋1-1𝑌𝑥𝑋) → (𝐹 “ (𝐹𝑥)) = 𝑥)
1814, 16, 17syl2anc 586 . . . . . . 7 ((𝜑𝑥𝐽) → (𝐹 “ (𝐹𝑥)) = 𝑥)
19 simpr 487 . . . . . . 7 ((𝜑𝑥𝐽) → 𝑥𝐽)
2018, 19eqeltrd 2915 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹 “ (𝐹𝑥)) ∈ 𝐽)
21 dffn4 6598 . . . . . . . . 9 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
224, 21sylib 220 . . . . . . . 8 (𝜑𝐹:𝑋onto→ran 𝐹)
23 elqtop3 22313 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
241, 22, 23syl2anc 586 . . . . . . 7 (𝜑 → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
2524adantr 483 . . . . . 6 ((𝜑𝑥𝐽) → ((𝐹𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑥) ⊆ ran 𝐹 ∧ (𝐹 “ (𝐹𝑥)) ∈ 𝐽)))
2613, 20, 25mpbir2and 711 . . . . 5 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
2711, 26eqeltrid 2919 . . . 4 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
2827ralrimiva 3184 . . 3 (𝜑 → ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))
29 qtoptopon 22314 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→ran 𝐹) → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
301, 22, 29syl2anc 586 . . . 4 (𝜑 → (𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹))
31 iscn 21845 . . . 4 (((𝐽 qTop 𝐹) ∈ (TopOn‘ran 𝐹) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽) ↔ (𝐹:ran 𝐹𝑋 ∧ ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))))
3230, 1, 31syl2anc 586 . . 3 (𝜑 → (𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽) ↔ (𝐹:ran 𝐹𝑋 ∧ ∀𝑥𝐽 (𝐹𝑥) ∈ (𝐽 qTop 𝐹))))
3310, 28, 32mpbir2and 711 . 2 (𝜑𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽))
34 ishmeo 22369 . 2 (𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)) ↔ (𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) ∧ 𝐹 ∈ ((𝐽 qTop 𝐹) Cn 𝐽)))
356, 33, 34sylanbrc 585 1 (𝜑𝐹 ∈ (𝐽Homeo(𝐽 qTop 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wss 3938  ccnv 5556  ran crn 5558  cima 5560   Fn wfn 6352  wf 6353  1-1wf1 6354  ontowfo 6355  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158   qTop cqtop 16778  TopOnctopon 21520   Cn ccn 21834  Homeochmeo 22363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-qtop 16782  df-top 21504  df-topon 21521  df-cn 21837  df-hmeo 22365
This theorem is referenced by:  t0kq  22428
  Copyright terms: Public domain W3C validator