Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq2 6689 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1-onto→wf1o 6417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 |
This theorem is referenced by: f1osng 6740 f1o2sn 6996 fveqf1o 7155 oacomf1o 8358 marypha1lem 9122 oef1o 9386 cnfcomlem 9387 cnfcom2 9390 infxpenc 9705 pwfseqlem5 10350 pwfseq 10351 summolem3 15354 summo 15357 fsum 15360 prodmolem3 15571 prodmo 15574 fprod 15579 gsumvalx 18275 gsumpropd 18277 gsumpropd2lem 18278 gsumval3lem1 19421 gsumval3 19423 cncfcnvcn 23994 isismt 26799 f1ocnt 31025 erdsze2lem1 33065 ismtyval 35885 rngoisoval 36062 lautset 38023 pautsetN 38039 sticksstones3 40032 sticksstones20 40050 eldioph2lem1 40498 imasgim 40841 stoweidlem35 43466 stoweidlem39 43470 isomgreqve 45165 |
Copyright terms: Public domain | W3C validator |