| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6752 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1-onto→wf1o 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 |
| This theorem is referenced by: f1osng 6804 f1o2sn 7075 fveqf1o 7236 oacomf1o 8480 marypha1lem 9317 oef1o 9588 cnfcomlem 9589 cnfcom2 9592 infxpenc 9909 pwfseqlem5 10554 pwfseq 10555 summolem3 15621 summo 15624 fsum 15627 prodmolem3 15840 prodmo 15843 fprod 15848 gsumvalx 18584 gsumpropd 18586 gsumpropd2lem 18587 gsumval3lem1 19817 gsumval3 19819 cncfcnvcn 24846 isismt 28512 f1ocnt 32782 erdsze2lem1 35247 ismtyval 37848 rngoisoval 38025 lautset 40129 pautsetN 40145 sticksstones3 42189 sticksstones20 42207 eldioph2lem1 42801 imasgim 43141 stoweidlem35 46081 stoweidlem39 46085 3f1oss1 47114 isubgr3stgrlem1 48005 isubgr3stgr 48014 |
| Copyright terms: Public domain | W3C validator |