| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6753 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 |
| This theorem is referenced by: f1osng 6805 f1o2sn 7076 fveqf1o 7239 oacomf1o 8483 marypha1lem 9323 oef1o 9594 cnfcomlem 9595 cnfcom2 9598 infxpenc 9912 pwfseqlem5 10557 pwfseq 10558 summolem3 15621 summo 15624 fsum 15627 prodmolem3 15840 prodmo 15843 fprod 15848 gsumvalx 18550 gsumpropd 18552 gsumpropd2lem 18553 gsumval3lem1 19784 gsumval3 19786 cncfcnvcn 24817 isismt 28479 f1ocnt 32745 erdsze2lem1 35176 ismtyval 37780 rngoisoval 37957 lautset 40061 pautsetN 40077 sticksstones3 42121 sticksstones20 42139 eldioph2lem1 42733 imasgim 43073 stoweidlem35 46016 stoweidlem39 46020 3f1oss1 47059 isubgr3stgrlem1 47950 isubgr3stgr 47959 |
| Copyright terms: Public domain | W3C validator |