| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6807 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 |
| This theorem is referenced by: f1osng 6859 f1o2sn 7132 fveqf1o 7295 oacomf1o 8577 marypha1lem 9445 oef1o 9712 cnfcomlem 9713 cnfcom2 9716 infxpenc 10032 pwfseqlem5 10677 pwfseq 10678 summolem3 15730 summo 15733 fsum 15736 prodmolem3 15949 prodmo 15952 fprod 15957 gsumvalx 18654 gsumpropd 18656 gsumpropd2lem 18657 gsumval3lem1 19886 gsumval3 19888 cncfcnvcn 24870 isismt 28513 f1ocnt 32779 erdsze2lem1 35225 ismtyval 37824 rngoisoval 38001 lautset 40101 pautsetN 40117 sticksstones3 42161 sticksstones20 42179 eldioph2lem1 42783 imasgim 43124 stoweidlem35 46064 stoweidlem39 46068 3f1oss1 47104 isubgr3stgrlem1 47978 isubgr3stgr 47987 |
| Copyright terms: Public domain | W3C validator |