| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6789 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: f1osng 6841 f1o2sn 7114 fveqf1o 7277 oacomf1o 8529 marypha1lem 9384 oef1o 9651 cnfcomlem 9652 cnfcom2 9655 infxpenc 9971 pwfseqlem5 10616 pwfseq 10617 summolem3 15680 summo 15683 fsum 15686 prodmolem3 15899 prodmo 15902 fprod 15907 gsumvalx 18603 gsumpropd 18605 gsumpropd2lem 18606 gsumval3lem1 19835 gsumval3 19837 cncfcnvcn 24819 isismt 28461 f1ocnt 32725 erdsze2lem1 35190 ismtyval 37794 rngoisoval 37971 lautset 40076 pautsetN 40092 sticksstones3 42136 sticksstones20 42154 eldioph2lem1 42748 imasgim 43089 stoweidlem35 46033 stoweidlem39 46037 3f1oss1 47076 isubgr3stgrlem1 47965 isubgr3stgr 47974 |
| Copyright terms: Public domain | W3C validator |