Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq2 6705 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1-onto→wf1o 6432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 |
This theorem is referenced by: f1osng 6757 f1o2sn 7014 fveqf1o 7175 oacomf1o 8396 marypha1lem 9192 oef1o 9456 cnfcomlem 9457 cnfcom2 9460 infxpenc 9774 pwfseqlem5 10419 pwfseq 10420 summolem3 15426 summo 15429 fsum 15432 prodmolem3 15643 prodmo 15646 fprod 15651 gsumvalx 18360 gsumpropd 18362 gsumpropd2lem 18363 gsumval3lem1 19506 gsumval3 19508 cncfcnvcn 24088 isismt 26895 f1ocnt 31123 erdsze2lem1 33165 ismtyval 35958 rngoisoval 36135 lautset 38096 pautsetN 38112 sticksstones3 40104 sticksstones20 40122 eldioph2lem1 40582 imasgim 40925 stoweidlem35 43576 stoweidlem39 43580 isomgreqve 45277 |
Copyright terms: Public domain | W3C validator |