| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6792 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 |
| This theorem is referenced by: f1osng 6844 f1o2sn 7117 fveqf1o 7280 oacomf1o 8532 marypha1lem 9391 oef1o 9658 cnfcomlem 9659 cnfcom2 9662 infxpenc 9978 pwfseqlem5 10623 pwfseq 10624 summolem3 15687 summo 15690 fsum 15693 prodmolem3 15906 prodmo 15909 fprod 15914 gsumvalx 18610 gsumpropd 18612 gsumpropd2lem 18613 gsumval3lem1 19842 gsumval3 19844 cncfcnvcn 24826 isismt 28468 f1ocnt 32732 erdsze2lem1 35197 ismtyval 37801 rngoisoval 37978 lautset 40083 pautsetN 40099 sticksstones3 42143 sticksstones20 42161 eldioph2lem1 42755 imasgim 43096 stoweidlem35 46040 stoweidlem39 46044 3f1oss1 47080 isubgr3stgrlem1 47969 isubgr3stgr 47978 |
| Copyright terms: Public domain | W3C validator |