![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq2 6851 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 –1-1-onto→wf1o 6572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 |
This theorem is referenced by: f1osng 6903 f1o2sn 7176 fveqf1o 7338 oacomf1o 8621 marypha1lem 9502 oef1o 9767 cnfcomlem 9768 cnfcom2 9771 infxpenc 10087 pwfseqlem5 10732 pwfseq 10733 summolem3 15762 summo 15765 fsum 15768 prodmolem3 15981 prodmo 15984 fprod 15989 gsumvalx 18714 gsumpropd 18716 gsumpropd2lem 18717 gsumval3lem1 19947 gsumval3 19949 cncfcnvcn 24971 isismt 28560 f1ocnt 32807 erdsze2lem1 35171 ismtyval 37760 rngoisoval 37937 lautset 40039 pautsetN 40055 sticksstones3 42105 sticksstones20 42123 eldioph2lem1 42716 imasgim 43057 stoweidlem35 45956 stoweidlem39 45960 3f1oss1 46990 |
Copyright terms: Public domain | W3C validator |