| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | f1oeq2 6771 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1-onto→wf1o 6498 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 |
| This theorem is referenced by: f1osng 6823 f1o2sn 7096 fveqf1o 7259 oacomf1o 8506 marypha1lem 9360 oef1o 9627 cnfcomlem 9628 cnfcom2 9631 infxpenc 9947 pwfseqlem5 10592 pwfseq 10593 summolem3 15656 summo 15659 fsum 15662 prodmolem3 15875 prodmo 15878 fprod 15883 gsumvalx 18579 gsumpropd 18581 gsumpropd2lem 18582 gsumval3lem1 19811 gsumval3 19813 cncfcnvcn 24795 isismt 28437 f1ocnt 32698 erdsze2lem1 35163 ismtyval 37767 rngoisoval 37944 lautset 40049 pautsetN 40065 sticksstones3 42109 sticksstones20 42127 eldioph2lem1 42721 imasgim 43062 stoweidlem35 46006 stoweidlem39 46010 3f1oss1 47049 isubgr3stgrlem1 47938 isubgr3stgr 47947 |
| Copyright terms: Public domain | W3C validator |