![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1oeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one onto functions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
f1oeq2d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
f1oeq2d | ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | f1oeq2 6837 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1-onto→𝐶 ↔ 𝐹:𝐵–1-1-onto→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 –1-1-onto→wf1o 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 |
This theorem is referenced by: f1osng 6889 f1o2sn 7161 fveqf1o 7321 oacomf1o 8601 marypha1lem 9470 oef1o 9735 cnfcomlem 9736 cnfcom2 9739 infxpenc 10055 pwfseqlem5 10700 pwfseq 10701 summolem3 15746 summo 15749 fsum 15752 prodmolem3 15965 prodmo 15968 fprod 15973 gsumvalx 18701 gsumpropd 18703 gsumpropd2lem 18704 gsumval3lem1 19937 gsumval3 19939 cncfcnvcn 24965 isismt 28556 f1ocnt 32809 erdsze2lem1 35187 ismtyval 37786 rngoisoval 37963 lautset 40064 pautsetN 40080 sticksstones3 42129 sticksstones20 42147 eldioph2lem1 42747 imasgim 43088 stoweidlem35 45990 stoweidlem39 45994 3f1oss1 47024 isubgr3stgrlem1 47868 isubgr3stgr 47877 |
Copyright terms: Public domain | W3C validator |