MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 9958
Description: Existence form of infxpenc 9954. A "uniform" or "canonical" version of infxpen 9950, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 9642 . 2 (𝐴 ∈ On → ∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
2 df-2o 8413 . . . . . . . 8 2o = suc 1o
32oveq2i 7368 . . . . . . 7 (ω ↑o 2o) = (ω ↑o suc 1o)
4 omelon 9582 . . . . . . . 8 ω ∈ On
5 1on 8424 . . . . . . . 8 1o ∈ On
6 oesuc 8473 . . . . . . . 8 ((ω ∈ On ∧ 1o ∈ On) → (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω))
74, 5, 6mp2an 690 . . . . . . 7 (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω)
8 oe1 8491 . . . . . . . . 9 (ω ∈ On → (ω ↑o 1o) = ω)
94, 8ax-mp 5 . . . . . . . 8 (ω ↑o 1o) = ω
109oveq1i 7367 . . . . . . 7 ((ω ↑o 1o) ·o ω) = (ω ·o ω)
113, 7, 103eqtri 2768 . . . . . 6 (ω ↑o 2o) = (ω ·o ω)
12 omxpen 9018 . . . . . . 7 ((ω ∈ On ∧ ω ∈ On) → (ω ·o ω) ≈ (ω × ω))
134, 4, 12mp2an 690 . . . . . 6 (ω ·o ω) ≈ (ω × ω)
1411, 13eqbrtri 5126 . . . . 5 (ω ↑o 2o) ≈ (ω × ω)
15 xpomen 9951 . . . . 5 (ω × ω) ≈ ω
1614, 15entri 8948 . . . 4 (ω ↑o 2o) ≈ ω
1716a1i 11 . . 3 (𝐴 ∈ On → (ω ↑o 2o) ≈ ω)
18 bren 8893 . . 3 ((ω ↑o 2o) ≈ ω ↔ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
1917, 18sylib 217 . 2 (𝐴 ∈ On → ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
20 exdistrv 1959 . . 3 (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) ↔ (∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω))
21 simpl 483 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → 𝐴 ∈ On)
22 simprl 769 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
23 sseq2 3970 . . . . . . . . 9 (𝑥 = 𝑏 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑏))
24 oveq2 7365 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (ω ↑o 𝑦) = (ω ↑o 𝑤))
2524f1oeq3d 6781 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ (𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤)))
2625cbvrexvw 3226 . . . . . . . . . 10 (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤))
27 fveq2 6842 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝑛𝑥) = (𝑛𝑏))
2827f1oeq1d 6779 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤)))
29 f1oeq2 6773 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3028, 29bitrd 278 . . . . . . . . . . 11 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3130rexbidv 3175 . . . . . . . . . 10 (𝑥 = 𝑏 → (∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3226, 31bitrid 282 . . . . . . . . 9 (𝑥 = 𝑏 → (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3323, 32imbi12d 344 . . . . . . . 8 (𝑥 = 𝑏 → ((ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
3433cbvralvw 3225 . . . . . . 7 (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3522, 34sylib 217 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
36 oveq2 7365 . . . . . . . . 9 (𝑏 = 𝑧 → (ω ↑o 𝑏) = (ω ↑o 𝑧))
3736cbvmptv 5218 . . . . . . . 8 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
3837cnveqi 5830 . . . . . . 7 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
3938fveq1i 6843 . . . . . 6 ((𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏))‘ran (𝑛𝑏)) = ((𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))‘ran (𝑛𝑏))
40 2on 8426 . . . . . . . . . 10 2o ∈ On
41 peano1 7825 . . . . . . . . . . 11 ∅ ∈ ω
42 oen0 8533 . . . . . . . . . . 11 (((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 2o))
4341, 42mpan2 689 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On) → ∅ ∈ (ω ↑o 2o))
444, 40, 43mp2an 690 . . . . . . . . 9 ∅ ∈ (ω ↑o 2o)
45 eqid 2736 . . . . . . . . . 10 (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})) = (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))
4645fveqf1o 7249 . . . . . . . . 9 ((𝑓:(ω ↑o 2o)–1-1-onto→ω ∧ ∅ ∈ (ω ↑o 2o) ∧ ∅ ∈ ω) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4744, 41, 46mp3an23 1453 . . . . . . . 8 (𝑓:(ω ↑o 2o)–1-1-onto→ω → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4847ad2antll 727 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4948simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω)
5048simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅)
5121, 35, 39, 49, 50infxpenc2lem3 9957 . . . . 5 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
5251ex 413 . . . 4 (𝐴 ∈ On → ((∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5352exlimdvv 1937 . . 3 (𝐴 ∈ On → (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5420, 53biimtrrid 242 . 2 (𝐴 ∈ On → ((∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
551, 19, 54mp2and 697 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  cdif 3907  cun 3908  wss 3910  c0 4282  {cpr 4588  cop 4592   class class class wbr 5105  cmpt 5188   I cid 5530   × cxp 5631  ccnv 5632  ran crn 5634  cres 5635  ccom 5637  Oncon0 6317  suc csuc 6319  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  ωcom 7802  1oc1o 8405  2oc2o 8406   ·o comu 8410  o coe 8411  cen 8880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-seqom 8394  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-oexp 8418  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-cnf 9598  df-card 9875
This theorem is referenced by:  pwfseq  10600
  Copyright terms: Public domain W3C validator