MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 9450
Description: Existence form of infxpenc 9446. A "uniform" or "canonical" version of infxpen 9442, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 9171 . 2 (𝐴 ∈ On → ∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
2 df-2o 8105 . . . . . . . 8 2o = suc 1o
32oveq2i 7169 . . . . . . 7 (ω ↑o 2o) = (ω ↑o suc 1o)
4 omelon 9111 . . . . . . . 8 ω ∈ On
5 1on 8111 . . . . . . . 8 1o ∈ On
6 oesuc 8154 . . . . . . . 8 ((ω ∈ On ∧ 1o ∈ On) → (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω))
74, 5, 6mp2an 690 . . . . . . 7 (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω)
8 oe1 8172 . . . . . . . . 9 (ω ∈ On → (ω ↑o 1o) = ω)
94, 8ax-mp 5 . . . . . . . 8 (ω ↑o 1o) = ω
109oveq1i 7168 . . . . . . 7 ((ω ↑o 1o) ·o ω) = (ω ·o ω)
113, 7, 103eqtri 2850 . . . . . 6 (ω ↑o 2o) = (ω ·o ω)
12 omxpen 8621 . . . . . . 7 ((ω ∈ On ∧ ω ∈ On) → (ω ·o ω) ≈ (ω × ω))
134, 4, 12mp2an 690 . . . . . 6 (ω ·o ω) ≈ (ω × ω)
1411, 13eqbrtri 5089 . . . . 5 (ω ↑o 2o) ≈ (ω × ω)
15 xpomen 9443 . . . . 5 (ω × ω) ≈ ω
1614, 15entri 8565 . . . 4 (ω ↑o 2o) ≈ ω
1716a1i 11 . . 3 (𝐴 ∈ On → (ω ↑o 2o) ≈ ω)
18 bren 8520 . . 3 ((ω ↑o 2o) ≈ ω ↔ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
1917, 18sylib 220 . 2 (𝐴 ∈ On → ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
20 exdistrv 1956 . . 3 (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) ↔ (∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω))
21 simpl 485 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → 𝐴 ∈ On)
22 simprl 769 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
23 sseq2 3995 . . . . . . . . 9 (𝑥 = 𝑏 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑏))
24 oveq2 7166 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (ω ↑o 𝑦) = (ω ↑o 𝑤))
2524f1oeq3d 6614 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ (𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤)))
2625cbvrexvw 3452 . . . . . . . . . 10 (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤))
27 fveq2 6672 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝑛𝑥) = (𝑛𝑏))
28 f1oeq1 6606 . . . . . . . . . . . . 13 ((𝑛𝑥) = (𝑛𝑏) → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤)))
2927, 28syl 17 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤)))
30 f1oeq2 6607 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3129, 30bitrd 281 . . . . . . . . . . 11 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3231rexbidv 3299 . . . . . . . . . 10 (𝑥 = 𝑏 → (∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3326, 32syl5bb 285 . . . . . . . . 9 (𝑥 = 𝑏 → (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3423, 33imbi12d 347 . . . . . . . 8 (𝑥 = 𝑏 → ((ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
3534cbvralvw 3451 . . . . . . 7 (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3622, 35sylib 220 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
37 oveq2 7166 . . . . . . . . 9 (𝑏 = 𝑧 → (ω ↑o 𝑏) = (ω ↑o 𝑧))
3837cbvmptv 5171 . . . . . . . 8 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
3938cnveqi 5747 . . . . . . 7 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
4039fveq1i 6673 . . . . . 6 ((𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏))‘ran (𝑛𝑏)) = ((𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))‘ran (𝑛𝑏))
41 2on 8113 . . . . . . . . . 10 2o ∈ On
42 peano1 7603 . . . . . . . . . . 11 ∅ ∈ ω
43 oen0 8214 . . . . . . . . . . 11 (((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 2o))
4442, 43mpan2 689 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On) → ∅ ∈ (ω ↑o 2o))
454, 41, 44mp2an 690 . . . . . . . . 9 ∅ ∈ (ω ↑o 2o)
46 eqid 2823 . . . . . . . . . 10 (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})) = (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))
4746fveqf1o 7060 . . . . . . . . 9 ((𝑓:(ω ↑o 2o)–1-1-onto→ω ∧ ∅ ∈ (ω ↑o 2o) ∧ ∅ ∈ ω) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4845, 42, 47mp3an23 1449 . . . . . . . 8 (𝑓:(ω ↑o 2o)–1-1-onto→ω → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4948ad2antll 727 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
5049simpld 497 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω)
5149simprd 498 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅)
5221, 36, 40, 50, 51infxpenc2lem3 9449 . . . . 5 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
5352ex 415 . . . 4 (𝐴 ∈ On → ((∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5453exlimdvv 1935 . . 3 (𝐴 ∈ On → (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5520, 54syl5bir 245 . 2 (𝐴 ∈ On → ((∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
561, 19, 55mp2and 697 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wral 3140  wrex 3141  cdif 3935  cun 3936  wss 3938  c0 4293  {cpr 4571  cop 4575   class class class wbr 5068  cmpt 5148   I cid 5461   × cxp 5555  ccnv 5556  ran crn 5558  cres 5559  ccom 5561  Oncon0 6193  suc csuc 6195  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  ωcom 7582  1oc1o 8097  2oc2o 8098   ·o comu 8102  o coe 8103  cen 8508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-oexp 8110  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-cnf 9127  df-card 9370
This theorem is referenced by:  pwfseq  10088
  Copyright terms: Public domain W3C validator