MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 9778
Description: Existence form of infxpenc 9774. A "uniform" or "canonical" version of infxpen 9770, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 9464 . 2 (𝐴 ∈ On → ∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
2 df-2o 8298 . . . . . . . 8 2o = suc 1o
32oveq2i 7286 . . . . . . 7 (ω ↑o 2o) = (ω ↑o suc 1o)
4 omelon 9404 . . . . . . . 8 ω ∈ On
5 1on 8309 . . . . . . . 8 1o ∈ On
6 oesuc 8357 . . . . . . . 8 ((ω ∈ On ∧ 1o ∈ On) → (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω))
74, 5, 6mp2an 689 . . . . . . 7 (ω ↑o suc 1o) = ((ω ↑o 1o) ·o ω)
8 oe1 8375 . . . . . . . . 9 (ω ∈ On → (ω ↑o 1o) = ω)
94, 8ax-mp 5 . . . . . . . 8 (ω ↑o 1o) = ω
109oveq1i 7285 . . . . . . 7 ((ω ↑o 1o) ·o ω) = (ω ·o ω)
113, 7, 103eqtri 2770 . . . . . 6 (ω ↑o 2o) = (ω ·o ω)
12 omxpen 8861 . . . . . . 7 ((ω ∈ On ∧ ω ∈ On) → (ω ·o ω) ≈ (ω × ω))
134, 4, 12mp2an 689 . . . . . 6 (ω ·o ω) ≈ (ω × ω)
1411, 13eqbrtri 5095 . . . . 5 (ω ↑o 2o) ≈ (ω × ω)
15 xpomen 9771 . . . . 5 (ω × ω) ≈ ω
1614, 15entri 8794 . . . 4 (ω ↑o 2o) ≈ ω
1716a1i 11 . . 3 (𝐴 ∈ On → (ω ↑o 2o) ≈ ω)
18 bren 8743 . . 3 ((ω ↑o 2o) ≈ ω ↔ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
1917, 18sylib 217 . 2 (𝐴 ∈ On → ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω)
20 exdistrv 1959 . . 3 (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) ↔ (∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω))
21 simpl 483 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → 𝐴 ∈ On)
22 simprl 768 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)))
23 sseq2 3947 . . . . . . . . 9 (𝑥 = 𝑏 → (ω ⊆ 𝑥 ↔ ω ⊆ 𝑏))
24 oveq2 7283 . . . . . . . . . . . 12 (𝑦 = 𝑤 → (ω ↑o 𝑦) = (ω ↑o 𝑤))
2524f1oeq3d 6713 . . . . . . . . . . 11 (𝑦 = 𝑤 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ (𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤)))
2625cbvrexvw 3384 . . . . . . . . . 10 (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤))
27 fveq2 6774 . . . . . . . . . . . . 13 (𝑥 = 𝑏 → (𝑛𝑥) = (𝑛𝑏))
2827f1oeq1d 6711 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤)))
29 f1oeq2 6705 . . . . . . . . . . . 12 (𝑥 = 𝑏 → ((𝑛𝑏):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3028, 29bitrd 278 . . . . . . . . . . 11 (𝑥 = 𝑏 → ((𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ (𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3130rexbidv 3226 . . . . . . . . . 10 (𝑥 = 𝑏 → (∃𝑤 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑤) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3226, 31bitrid 282 . . . . . . . . 9 (𝑥 = 𝑏 → (∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦) ↔ ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3323, 32imbi12d 345 . . . . . . . 8 (𝑥 = 𝑏 → ((ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤))))
3433cbvralvw 3383 . . . . . . 7 (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ↔ ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
3522, 34sylib 217 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∀𝑏𝐴 (ω ⊆ 𝑏 → ∃𝑤 ∈ (On ∖ 1o)(𝑛𝑏):𝑏1-1-onto→(ω ↑o 𝑤)))
36 oveq2 7283 . . . . . . . . 9 (𝑏 = 𝑧 → (ω ↑o 𝑏) = (ω ↑o 𝑧))
3736cbvmptv 5187 . . . . . . . 8 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
3837cnveqi 5783 . . . . . . 7 (𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏)) = (𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))
3938fveq1i 6775 . . . . . 6 ((𝑏 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑏))‘ran (𝑛𝑏)) = ((𝑧 ∈ (On ∖ 1o) ↦ (ω ↑o 𝑧))‘ran (𝑛𝑏))
40 2on 8311 . . . . . . . . . 10 2o ∈ On
41 peano1 7735 . . . . . . . . . . 11 ∅ ∈ ω
42 oen0 8417 . . . . . . . . . . 11 (((ω ∈ On ∧ 2o ∈ On) ∧ ∅ ∈ ω) → ∅ ∈ (ω ↑o 2o))
4341, 42mpan2 688 . . . . . . . . . 10 ((ω ∈ On ∧ 2o ∈ On) → ∅ ∈ (ω ↑o 2o))
444, 40, 43mp2an 689 . . . . . . . . 9 ∅ ∈ (ω ↑o 2o)
45 eqid 2738 . . . . . . . . . 10 (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})) = (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))
4645fveqf1o 7175 . . . . . . . . 9 ((𝑓:(ω ↑o 2o)–1-1-onto→ω ∧ ∅ ∈ (ω ↑o 2o) ∧ ∅ ∈ ω) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4744, 41, 46mp3an23 1452 . . . . . . . 8 (𝑓:(ω ↑o 2o)–1-1-onto→ω → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4847ad2antll 726 . . . . . . 7 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω ∧ ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅))
4948simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → (𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩})):(ω ↑o 2o)–1-1-onto→ω)
5048simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ((𝑓 ∘ (( I ↾ ((ω ↑o 2o) ∖ {∅, (𝑓‘∅)})) ∪ {⟨∅, (𝑓‘∅)⟩, ⟨(𝑓‘∅), ∅⟩}))‘∅) = ∅)
5121, 35, 39, 49, 50infxpenc2lem3 9777 . . . . 5 ((𝐴 ∈ On ∧ (∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω)) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
5251ex 413 . . . 4 (𝐴 ∈ On → ((∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5352exlimdvv 1937 . . 3 (𝐴 ∈ On → (∃𝑛𝑓(∀𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
5420, 53syl5bir 242 . 2 (𝐴 ∈ On → ((∃𝑛𝑥𝐴 (ω ⊆ 𝑥 → ∃𝑦 ∈ (On ∖ 1o)(𝑛𝑥):𝑥1-1-onto→(ω ↑o 𝑦)) ∧ ∃𝑓 𝑓:(ω ↑o 2o)–1-1-onto→ω) → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏)))
551, 19, 54mp2and 696 1 (𝐴 ∈ On → ∃𝑔𝑏𝐴 (ω ⊆ 𝑏 → (𝑔𝑏):(𝑏 × 𝑏)–1-1-onto𝑏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wral 3064  wrex 3065  cdif 3884  cun 3885  wss 3887  c0 4256  {cpr 4563  cop 4567   class class class wbr 5074  cmpt 5157   I cid 5488   × cxp 5587  ccnv 5588  ran crn 5590  cres 5591  ccom 5593  Oncon0 6266  suc csuc 6268  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  ωcom 7712  1oc1o 8290  2oc2o 8291   ·o comu 8295  o coe 8296  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-oexp 8303  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-cnf 9420  df-card 9697
This theorem is referenced by:  pwfseq  10420
  Copyright terms: Public domain W3C validator