MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 10013
Description: Existence form of infxpenc 10009. A "uniform" or "canonical" version of infxpen 10005, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 9697 . 2 (𝐴 ∈ On β†’ βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)))
2 df-2o 8463 . . . . . . . 8 2o = suc 1o
32oveq2i 7416 . . . . . . 7 (Ο‰ ↑o 2o) = (Ο‰ ↑o suc 1o)
4 omelon 9637 . . . . . . . 8 Ο‰ ∈ On
5 1on 8474 . . . . . . . 8 1o ∈ On
6 oesuc 8523 . . . . . . . 8 ((Ο‰ ∈ On ∧ 1o ∈ On) β†’ (Ο‰ ↑o suc 1o) = ((Ο‰ ↑o 1o) Β·o Ο‰))
74, 5, 6mp2an 690 . . . . . . 7 (Ο‰ ↑o suc 1o) = ((Ο‰ ↑o 1o) Β·o Ο‰)
8 oe1 8540 . . . . . . . . 9 (Ο‰ ∈ On β†’ (Ο‰ ↑o 1o) = Ο‰)
94, 8ax-mp 5 . . . . . . . 8 (Ο‰ ↑o 1o) = Ο‰
109oveq1i 7415 . . . . . . 7 ((Ο‰ ↑o 1o) Β·o Ο‰) = (Ο‰ Β·o Ο‰)
113, 7, 103eqtri 2764 . . . . . 6 (Ο‰ ↑o 2o) = (Ο‰ Β·o Ο‰)
12 omxpen 9070 . . . . . . 7 ((Ο‰ ∈ On ∧ Ο‰ ∈ On) β†’ (Ο‰ Β·o Ο‰) β‰ˆ (Ο‰ Γ— Ο‰))
134, 4, 12mp2an 690 . . . . . 6 (Ο‰ Β·o Ο‰) β‰ˆ (Ο‰ Γ— Ο‰)
1411, 13eqbrtri 5168 . . . . 5 (Ο‰ ↑o 2o) β‰ˆ (Ο‰ Γ— Ο‰)
15 xpomen 10006 . . . . 5 (Ο‰ Γ— Ο‰) β‰ˆ Ο‰
1614, 15entri 9000 . . . 4 (Ο‰ ↑o 2o) β‰ˆ Ο‰
1716a1i 11 . . 3 (𝐴 ∈ On β†’ (Ο‰ ↑o 2o) β‰ˆ Ο‰)
18 bren 8945 . . 3 ((Ο‰ ↑o 2o) β‰ˆ Ο‰ ↔ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
1917, 18sylib 217 . 2 (𝐴 ∈ On β†’ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
20 exdistrv 1959 . . 3 (βˆƒπ‘›βˆƒπ‘“(βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) ↔ (βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰))
21 simpl 483 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ 𝐴 ∈ On)
22 simprl 769 . . . . . . 7 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)))
23 sseq2 4007 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (Ο‰ βŠ† π‘₯ ↔ Ο‰ βŠ† 𝑏))
24 oveq2 7413 . . . . . . . . . . . 12 (𝑦 = 𝑀 β†’ (Ο‰ ↑o 𝑦) = (Ο‰ ↑o 𝑀))
2524f1oeq3d 6827 . . . . . . . . . . 11 (𝑦 = 𝑀 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ (π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
2625cbvrexvw 3235 . . . . . . . . . 10 (βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀))
27 fveq2 6888 . . . . . . . . . . . . 13 (π‘₯ = 𝑏 β†’ (π‘›β€˜π‘₯) = (π‘›β€˜π‘))
2827f1oeq1d 6825 . . . . . . . . . . . 12 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
29 f1oeq2 6819 . . . . . . . . . . . 12 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3028, 29bitrd 278 . . . . . . . . . . 11 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3130rexbidv 3178 . . . . . . . . . 10 (π‘₯ = 𝑏 β†’ (βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3226, 31bitrid 282 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3323, 32imbi12d 344 . . . . . . . 8 (π‘₯ = 𝑏 β†’ ((Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ↔ (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))))
3433cbvralvw 3234 . . . . . . 7 (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ↔ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3522, 34sylib 217 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
36 oveq2 7413 . . . . . . . . 9 (𝑏 = 𝑧 β†’ (Ο‰ ↑o 𝑏) = (Ο‰ ↑o 𝑧))
3736cbvmptv 5260 . . . . . . . 8 (𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏)) = (𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))
3837cnveqi 5872 . . . . . . 7 β—‘(𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏)) = β—‘(𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))
3938fveq1i 6889 . . . . . 6 (β—‘(𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏))β€˜ran (π‘›β€˜π‘)) = (β—‘(𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))β€˜ran (π‘›β€˜π‘))
40 2on 8476 . . . . . . . . . 10 2o ∈ On
41 peano1 7875 . . . . . . . . . . 11 βˆ… ∈ Ο‰
42 oen0 8582 . . . . . . . . . . 11 (((Ο‰ ∈ On ∧ 2o ∈ On) ∧ βˆ… ∈ Ο‰) β†’ βˆ… ∈ (Ο‰ ↑o 2o))
4341, 42mpan2 689 . . . . . . . . . 10 ((Ο‰ ∈ On ∧ 2o ∈ On) β†’ βˆ… ∈ (Ο‰ ↑o 2o))
444, 40, 43mp2an 690 . . . . . . . . 9 βˆ… ∈ (Ο‰ ↑o 2o)
45 eqid 2732 . . . . . . . . . 10 (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})) = (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))
4645fveqf1o 7297 . . . . . . . . 9 ((𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ βˆ… ∈ (Ο‰ ↑o 2o) ∧ βˆ… ∈ Ο‰) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4744, 41, 46mp3an23 1453 . . . . . . . 8 (𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4847ad2antll 727 . . . . . . 7 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4948simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
5048simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…)
5121, 35, 39, 49, 50infxpenc2lem3 10012 . . . . 5 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
5251ex 413 . . . 4 (𝐴 ∈ On β†’ ((βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
5352exlimdvv 1937 . . 3 (𝐴 ∈ On β†’ (βˆƒπ‘›βˆƒπ‘“(βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
5420, 53biimtrrid 242 . 2 (𝐴 ∈ On β†’ ((βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
551, 19, 54mp2and 697 1 (𝐴 ∈ On β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3944   βˆͺ cun 3945   βŠ† wss 3947  βˆ…c0 4321  {cpr 4629  βŸ¨cop 4633   class class class wbr 5147   ↦ cmpt 5230   I cid 5572   Γ— cxp 5673  β—‘ccnv 5674  ran crn 5676   β†Ύ cres 5677   ∘ ccom 5679  Oncon0 6361  suc csuc 6363  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Ο‰com 7851  1oc1o 8455  2oc2o 8456   Β·o comu 8460   ↑o coe 8461   β‰ˆ cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-oexp 8468  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-oi 9501  df-cnf 9653  df-card 9930
This theorem is referenced by:  pwfseq  10655
  Copyright terms: Public domain W3C validator