MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxpenc2 Structured version   Visualization version   GIF version

Theorem infxpenc2 10019
Description: Existence form of infxpenc 10015. A "uniform" or "canonical" version of infxpen 10011, asserting the existence of a single function 𝑔 that simultaneously demonstrates product idempotence of all ordinals below a given bound. (Contributed by Mario Carneiro, 30-May-2015.)
Assertion
Ref Expression
infxpenc2 (𝐴 ∈ On β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Distinct variable group:   𝑔,𝑏,𝐴

Proof of Theorem infxpenc2
Dummy variables 𝑓 𝑛 𝑀 π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnfcom3c 9703 . 2 (𝐴 ∈ On β†’ βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)))
2 df-2o 8469 . . . . . . . 8 2o = suc 1o
32oveq2i 7422 . . . . . . 7 (Ο‰ ↑o 2o) = (Ο‰ ↑o suc 1o)
4 omelon 9643 . . . . . . . 8 Ο‰ ∈ On
5 1on 8480 . . . . . . . 8 1o ∈ On
6 oesuc 8529 . . . . . . . 8 ((Ο‰ ∈ On ∧ 1o ∈ On) β†’ (Ο‰ ↑o suc 1o) = ((Ο‰ ↑o 1o) Β·o Ο‰))
74, 5, 6mp2an 690 . . . . . . 7 (Ο‰ ↑o suc 1o) = ((Ο‰ ↑o 1o) Β·o Ο‰)
8 oe1 8546 . . . . . . . . 9 (Ο‰ ∈ On β†’ (Ο‰ ↑o 1o) = Ο‰)
94, 8ax-mp 5 . . . . . . . 8 (Ο‰ ↑o 1o) = Ο‰
109oveq1i 7421 . . . . . . 7 ((Ο‰ ↑o 1o) Β·o Ο‰) = (Ο‰ Β·o Ο‰)
113, 7, 103eqtri 2764 . . . . . 6 (Ο‰ ↑o 2o) = (Ο‰ Β·o Ο‰)
12 omxpen 9076 . . . . . . 7 ((Ο‰ ∈ On ∧ Ο‰ ∈ On) β†’ (Ο‰ Β·o Ο‰) β‰ˆ (Ο‰ Γ— Ο‰))
134, 4, 12mp2an 690 . . . . . 6 (Ο‰ Β·o Ο‰) β‰ˆ (Ο‰ Γ— Ο‰)
1411, 13eqbrtri 5169 . . . . 5 (Ο‰ ↑o 2o) β‰ˆ (Ο‰ Γ— Ο‰)
15 xpomen 10012 . . . . 5 (Ο‰ Γ— Ο‰) β‰ˆ Ο‰
1614, 15entri 9006 . . . 4 (Ο‰ ↑o 2o) β‰ˆ Ο‰
1716a1i 11 . . 3 (𝐴 ∈ On β†’ (Ο‰ ↑o 2o) β‰ˆ Ο‰)
18 bren 8951 . . 3 ((Ο‰ ↑o 2o) β‰ˆ Ο‰ ↔ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
1917, 18sylib 217 . 2 (𝐴 ∈ On β†’ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
20 exdistrv 1959 . . 3 (βˆƒπ‘›βˆƒπ‘“(βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) ↔ (βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰))
21 simpl 483 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ 𝐴 ∈ On)
22 simprl 769 . . . . . . 7 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)))
23 sseq2 4008 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (Ο‰ βŠ† π‘₯ ↔ Ο‰ βŠ† 𝑏))
24 oveq2 7419 . . . . . . . . . . . 12 (𝑦 = 𝑀 β†’ (Ο‰ ↑o 𝑦) = (Ο‰ ↑o 𝑀))
2524f1oeq3d 6830 . . . . . . . . . . 11 (𝑦 = 𝑀 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ (π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
2625cbvrexvw 3235 . . . . . . . . . 10 (βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀))
27 fveq2 6891 . . . . . . . . . . . . 13 (π‘₯ = 𝑏 β†’ (π‘›β€˜π‘₯) = (π‘›β€˜π‘))
2827f1oeq1d 6828 . . . . . . . . . . . 12 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
29 f1oeq2 6822 . . . . . . . . . . . 12 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3028, 29bitrd 278 . . . . . . . . . . 11 (π‘₯ = 𝑏 β†’ ((π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ (π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3130rexbidv 3178 . . . . . . . . . 10 (π‘₯ = 𝑏 β†’ (βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑀) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3226, 31bitrid 282 . . . . . . . . 9 (π‘₯ = 𝑏 β†’ (βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦) ↔ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3323, 32imbi12d 344 . . . . . . . 8 (π‘₯ = 𝑏 β†’ ((Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ↔ (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀))))
3433cbvralvw 3234 . . . . . . 7 (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ↔ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
3522, 34sylib 217 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ βˆƒπ‘€ ∈ (On βˆ– 1o)(π‘›β€˜π‘):𝑏–1-1-ontoβ†’(Ο‰ ↑o 𝑀)))
36 oveq2 7419 . . . . . . . . 9 (𝑏 = 𝑧 β†’ (Ο‰ ↑o 𝑏) = (Ο‰ ↑o 𝑧))
3736cbvmptv 5261 . . . . . . . 8 (𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏)) = (𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))
3837cnveqi 5874 . . . . . . 7 β—‘(𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏)) = β—‘(𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))
3938fveq1i 6892 . . . . . 6 (β—‘(𝑏 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑏))β€˜ran (π‘›β€˜π‘)) = (β—‘(𝑧 ∈ (On βˆ– 1o) ↦ (Ο‰ ↑o 𝑧))β€˜ran (π‘›β€˜π‘))
40 2on 8482 . . . . . . . . . 10 2o ∈ On
41 peano1 7881 . . . . . . . . . . 11 βˆ… ∈ Ο‰
42 oen0 8588 . . . . . . . . . . 11 (((Ο‰ ∈ On ∧ 2o ∈ On) ∧ βˆ… ∈ Ο‰) β†’ βˆ… ∈ (Ο‰ ↑o 2o))
4341, 42mpan2 689 . . . . . . . . . 10 ((Ο‰ ∈ On ∧ 2o ∈ On) β†’ βˆ… ∈ (Ο‰ ↑o 2o))
444, 40, 43mp2an 690 . . . . . . . . 9 βˆ… ∈ (Ο‰ ↑o 2o)
45 eqid 2732 . . . . . . . . . 10 (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})) = (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))
4645fveqf1o 7303 . . . . . . . . 9 ((𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ βˆ… ∈ (Ο‰ ↑o 2o) ∧ βˆ… ∈ Ο‰) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4744, 41, 46mp3an23 1453 . . . . . . . 8 (𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4847ad2antll 727 . . . . . . 7 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰ ∧ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…))
4948simpld 495 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ (𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©})):(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)
5048simprd 496 . . . . . 6 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ ((𝑓 ∘ (( I β†Ύ ((Ο‰ ↑o 2o) βˆ– {βˆ…, (β—‘π‘“β€˜βˆ…)})) βˆͺ {βŸ¨βˆ…, (β—‘π‘“β€˜βˆ…)⟩, ⟨(β—‘π‘“β€˜βˆ…), βˆ…βŸ©}))β€˜βˆ…) = βˆ…)
5121, 35, 39, 49, 50infxpenc2lem3 10018 . . . . 5 ((𝐴 ∈ On ∧ (βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰)) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
5251ex 413 . . . 4 (𝐴 ∈ On β†’ ((βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
5352exlimdvv 1937 . . 3 (𝐴 ∈ On β†’ (βˆƒπ‘›βˆƒπ‘“(βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
5420, 53biimtrrid 242 . 2 (𝐴 ∈ On β†’ ((βˆƒπ‘›βˆ€π‘₯ ∈ 𝐴 (Ο‰ βŠ† π‘₯ β†’ βˆƒπ‘¦ ∈ (On βˆ– 1o)(π‘›β€˜π‘₯):π‘₯–1-1-ontoβ†’(Ο‰ ↑o 𝑦)) ∧ βˆƒπ‘“ 𝑓:(Ο‰ ↑o 2o)–1-1-ontoβ†’Ο‰) β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏)))
551, 19, 54mp2and 697 1 (𝐴 ∈ On β†’ βˆƒπ‘”βˆ€π‘ ∈ 𝐴 (Ο‰ βŠ† 𝑏 β†’ (π‘”β€˜π‘):(𝑏 Γ— 𝑏)–1-1-onto→𝑏))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3945   βˆͺ cun 3946   βŠ† wss 3948  βˆ…c0 4322  {cpr 4630  βŸ¨cop 4634   class class class wbr 5148   ↦ cmpt 5231   I cid 5573   Γ— cxp 5674  β—‘ccnv 5675  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680  Oncon0 6364  suc csuc 6366  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7411  Ο‰com 7857  1oc1o 8461  2oc2o 8462   Β·o comu 8466   ↑o coe 8467   β‰ˆ cen 8938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-inf2 9638
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-supp 8149  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-seqom 8450  df-1o 8468  df-2o 8469  df-oadd 8472  df-omul 8473  df-oexp 8474  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-oi 9507  df-cnf 9659  df-card 9936
This theorem is referenced by:  pwfseq  10661
  Copyright terms: Public domain W3C validator