MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodf1o Structured version   Visualization version   GIF version

Theorem fprodf1o 15584
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fprodf1o.2 (𝜑𝐶 ∈ Fin)
fprodf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fprodf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fprodf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fprodf1o (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
Distinct variable groups:   𝐴,𝑘,𝑛   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝑘,𝑛,𝜑
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fprodf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 15581 . . . 4 𝑘 ∈ ∅ 𝐵 = 1
2 fprodf1o.3 . . . . . . . . 9 (𝜑𝐹:𝐶1-1-onto𝐴)
32adantr 480 . . . . . . . 8 ((𝜑𝐶 = ∅) → 𝐹:𝐶1-1-onto𝐴)
4 f1oeq2 6689 . . . . . . . . 9 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
54adantl 481 . . . . . . . 8 ((𝜑𝐶 = ∅) → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
63, 5mpbid 231 . . . . . . 7 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
7 f1ofo 6707 . . . . . . 7 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
86, 7syl 17 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–onto𝐴)
9 fo00 6735 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
109simprbi 496 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
118, 10syl 17 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
1211prodeq1d 15559 . . . 4 ((𝜑𝐶 = ∅) → ∏𝑘𝐴 𝐵 = ∏𝑘 ∈ ∅ 𝐵)
13 prodeq1 15547 . . . . . 6 (𝐶 = ∅ → ∏𝑛𝐶 𝐷 = ∏𝑛 ∈ ∅ 𝐷)
14 prod0 15581 . . . . . 6 𝑛 ∈ ∅ 𝐷 = 1
1513, 14eqtrdi 2795 . . . . 5 (𝐶 = ∅ → ∏𝑛𝐶 𝐷 = 1)
1615adantl 481 . . . 4 ((𝜑𝐶 = ∅) → ∏𝑛𝐶 𝐷 = 1)
171, 12, 163eqtr4a 2805 . . 3 ((𝜑𝐶 = ∅) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
1817ex 412 . 2 (𝜑 → (𝐶 = ∅ → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
19 2fveq3 6761 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
20 simprl 767 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (♯‘𝐶) ∈ ℕ)
21 simprr 769 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
22 f1of 6700 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
232, 22syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2423ffvelrnda 6943 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
25 fprodf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2625fmpttd 6971 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2726ffvelrnda 6943 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2824, 27syldan 590 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2928adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
30 simpr 484 . . . . . . . . . . . 12 (((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
31 f1oco 6722 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
322, 30, 31syl2an 595 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
33 f1of 6700 . . . . . . . . . . 11 ((𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
35 fvco3 6849 . . . . . . . . . 10 (((𝐹𝑓):(1...(♯‘𝐶))⟶𝐴𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3634, 35sylan 579 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
37 f1of 6700 . . . . . . . . . . . . 13 (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶𝑓:(1...(♯‘𝐶))⟶𝐶)
3837adantl 481 . . . . . . . . . . . 12 (((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
3938adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
40 fvco3 6849 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐶))⟶𝐶𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4139, 40sylan 579 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
4241fveq2d 6760 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4336, 42eqtrd 2778 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4419, 20, 21, 29, 43fprod 15579 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( · , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(♯‘𝐶)))
45 fprodf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4623ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4745, 46eqeltrrd 2840 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
48 fprodf1o.1 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
49 eqid 2738 . . . . . . . . . . . . . 14 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
5048, 49fvmpti 6856 . . . . . . . . . . . . 13 (𝐺𝐴 → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
5147, 50syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
5245fveq2d 6760 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
53 eqid 2738 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5453fvmpt2i 6867 . . . . . . . . . . . . 13 (𝑛𝐶 → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5554adantl 481 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5651, 52, 553eqtr4rd 2789 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5756ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
58 nffvmpt1 6767 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
5958nfeq1 2921 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
60 fveq2 6756 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
61 2fveq3 6761 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6260, 61eqeq12d 2754 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6359, 62rspc 3539 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6457, 63mpan9 506 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6564adantlr 711 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6665prodeq2dv 15561 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = ∏𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
67 fveq2 6756 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6826adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6968ffvelrnda 6943 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
7067, 20, 32, 69, 36fprod 15579 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( · , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(♯‘𝐶)))
7144, 66, 703eqtr4rd 2789 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
72 prodfc 15583 . . . . . 6 𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = ∏𝑘𝐴 𝐵
73 prodfc 15583 . . . . . 6 𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = ∏𝑛𝐶 𝐷
7471, 72, 733eqtr3g 2802 . . . . 5 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
7574expr 456 . . . 4 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
7675exlimdv 1937 . . 3 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
7776expimpd 453 . 2 (𝜑 → (((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷))
78 fprodf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
79 fz1f1o 15350 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8078, 79syl 17 . 2 (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
8118, 77, 80mpjaod 856 1 (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wex 1783  wcel 2108  wral 3063  c0 4253  cmpt 5153   I cid 5479  ccom 5584  wf 6414  ontowfo 6416  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Fincfn 8691  cc 10800  1c1 10803   · cmul 10807  cn 11903  ...cfz 13168  seqcseq 13649  chash 13972  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  fprodss  15586  fprodshft  15614  fprodrev  15615  fprod2dlem  15618  fprodcnv  15621  gausslemma2dlem1  26419  hgt750lemg  32534
  Copyright terms: Public domain W3C validator