MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodf1o Structured version   Visualization version   GIF version

Theorem fprodf1o 15922
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
fprodf1o.2 (πœ‘ β†’ 𝐢 ∈ Fin)
fprodf1o.3 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
fprodf1o.4 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
fprodf1o.5 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Assertion
Ref Expression
fprodf1o (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
Distinct variable groups:   𝐴,π‘˜,𝑛   𝐡,𝑛   𝐢,𝑛   𝐷,π‘˜   𝑛,𝐹   π‘˜,𝐺   π‘˜,𝑛,πœ‘
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)   𝐷(𝑛)   𝐹(π‘˜)   𝐺(𝑛)

Proof of Theorem fprodf1o
Dummy variables 𝑓 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 15919 . . . 4 βˆπ‘˜ ∈ βˆ… 𝐡 = 1
2 fprodf1o.3 . . . . . . . . 9 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
32adantr 479 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:𝐢–1-1-onto→𝐴)
4 f1oeq2 6823 . . . . . . . . 9 (𝐢 = βˆ… β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:βˆ…β€“1-1-onto→𝐴))
54adantl 480 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:βˆ…β€“1-1-onto→𝐴))
63, 5mpbid 231 . . . . . . 7 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:βˆ…β€“1-1-onto→𝐴)
7 f1ofo 6841 . . . . . . 7 (𝐹:βˆ…β€“1-1-onto→𝐴 β†’ 𝐹:βˆ…β€“onto→𝐴)
86, 7syl 17 . . . . . 6 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:βˆ…β€“onto→𝐴)
9 fo00 6870 . . . . . . 7 (𝐹:βˆ…β€“onto→𝐴 ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
109simprbi 495 . . . . . 6 (𝐹:βˆ…β€“onto→𝐴 β†’ 𝐴 = βˆ…)
118, 10syl 17 . . . . 5 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐴 = βˆ…)
1211prodeq1d 15897 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘˜ ∈ βˆ… 𝐡)
13 prodeq1 15885 . . . . . 6 (𝐢 = βˆ… β†’ βˆπ‘› ∈ 𝐢 𝐷 = βˆπ‘› ∈ βˆ… 𝐷)
14 prod0 15919 . . . . . 6 βˆπ‘› ∈ βˆ… 𝐷 = 1
1513, 14eqtrdi 2781 . . . . 5 (𝐢 = βˆ… β†’ βˆπ‘› ∈ 𝐢 𝐷 = 1)
1615adantl 480 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘› ∈ 𝐢 𝐷 = 1)
171, 12, 163eqtr4a 2791 . . 3 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
1817ex 411 . 2 (πœ‘ β†’ (𝐢 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
19 2fveq3 6897 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
20 simprl 769 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (β™―β€˜πΆ) ∈ β„•)
21 simprr 771 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)
22 f1of 6834 . . . . . . . . . . . 12 (𝐹:𝐢–1-1-onto→𝐴 β†’ 𝐹:𝐢⟢𝐴)
232, 22syl 17 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐢⟢𝐴)
2423ffvelcdmda 7089 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ (πΉβ€˜π‘š) ∈ 𝐴)
25 fprodf1o.5 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
2625fmpttd 7120 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
2726ffvelcdmda 7089 . . . . . . . . . 10 ((πœ‘ ∧ (πΉβ€˜π‘š) ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2824, 27syldan 589 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2928adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
30 simpr 483 . . . . . . . . . . . 12 (((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)
31 f1oco 6857 . . . . . . . . . . . 12 ((𝐹:𝐢–1-1-onto→𝐴 ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
322, 30, 31syl2an 594 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
33 f1of 6834 . . . . . . . . . . 11 ((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴 β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
35 fvco3 6992 . . . . . . . . . 10 (((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
3634, 35sylan 578 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
37 f1of 6834 . . . . . . . . . . . . 13 (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
3837adantl 480 . . . . . . . . . . . 12 (((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
3938adantl 480 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
40 fvco3 6992 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜πΆ))⟢𝐢 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
4139, 40sylan 578 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
4241fveq2d 6896 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4336, 42eqtrd 2765 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4419, 20, 21, 29, 43fprod 15917 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓)))β€˜(β™―β€˜πΆ)))
45 fprodf1o.4 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
4623ffvelcdmda 7089 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) ∈ 𝐴)
4745, 46eqeltrrd 2826 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ 𝐺 ∈ 𝐴)
48 fprodf1o.1 . . . . . . . . . . . . . 14 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
49 eqid 2725 . . . . . . . . . . . . . 14 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
5048, 49fvmpti 6999 . . . . . . . . . . . . 13 (𝐺 ∈ 𝐴 β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ) = ( I β€˜π·))
5147, 50syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ) = ( I β€˜π·))
5245fveq2d 6896 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ))
53 eqid 2725 . . . . . . . . . . . . . 14 (𝑛 ∈ 𝐢 ↦ 𝐷) = (𝑛 ∈ 𝐢 ↦ 𝐷)
5453fvmpt2i 7010 . . . . . . . . . . . . 13 (𝑛 ∈ 𝐢 β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ( I β€˜π·))
5554adantl 480 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ( I β€˜π·))
5651, 52, 553eqtr4rd 2776 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
5756ralrimiva 3136 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
58 nffvmpt1 6903 . . . . . . . . . . . 12 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š)
5958nfeq1 2908 . . . . . . . . . . 11 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))
60 fveq2 6892 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
61 2fveq3 6897 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6260, 61eqeq12d 2741 . . . . . . . . . . 11 (𝑛 = π‘š β†’ (((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) ↔ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6359, 62rspc 3589 . . . . . . . . . 10 (π‘š ∈ 𝐢 β†’ (βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6457, 63mpan9 505 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6564adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6665prodeq2dv 15899 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = βˆπ‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
67 fveq2 6892 . . . . . . . 8 (π‘š = ((𝐹 ∘ 𝑓)β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
6826adantr 479 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
6968ffvelcdmda 7089 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
7067, 20, 32, 69, 36fprod 15917 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓)))β€˜(β™―β€˜πΆ)))
7144, 66, 703eqtr4rd 2776 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
72 prodfc 15921 . . . . . 6 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
73 prodfc 15921 . . . . . 6 βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = βˆπ‘› ∈ 𝐢 𝐷
7471, 72, 733eqtr3g 2788 . . . . 5 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
7574expr 455 . . . 4 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
7675exlimdv 1928 . . 3 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
7776expimpd 452 . 2 (πœ‘ β†’ (((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
78 fprodf1o.2 . . 3 (πœ‘ β†’ 𝐢 ∈ Fin)
79 fz1f1o 15688 . . 3 (𝐢 ∈ Fin β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8078, 79syl 17 . 2 (πœ‘ β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8118, 77, 80mpjaod 858 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∨ wo 845   = wceq 1533  βˆƒwex 1773   ∈ wcel 2098  βˆ€wral 3051  βˆ…c0 4318   ↦ cmpt 5226   I cid 5569   ∘ ccom 5676  βŸΆwf 6539  β€“ontoβ†’wfo 6541  β€“1-1-ontoβ†’wf1o 6542  β€˜cfv 6543  (class class class)co 7416  Fincfn 8962  β„‚cc 11136  1c1 11139   Β· cmul 11143  β„•cn 12242  ...cfz 13516  seqcseq 13998  β™―chash 14321  βˆcprod 15881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-oi 9533  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-rp 13007  df-fz 13517  df-fzo 13660  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-prod 15882
This theorem is referenced by:  fprodss  15924  fprodshft  15952  fprodrev  15953  fprod2dlem  15956  fprodcnv  15959  gausslemma2dlem1  27317  hgt750lemg  34343
  Copyright terms: Public domain W3C validator