MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodf1o Structured version   Visualization version   GIF version

Theorem fprodf1o 15886
Description: Re-index a finite product using a bijection. (Contributed by Scott Fenton, 7-Dec-2017.)
Hypotheses
Ref Expression
fprodf1o.1 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
fprodf1o.2 (πœ‘ β†’ 𝐢 ∈ Fin)
fprodf1o.3 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
fprodf1o.4 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
fprodf1o.5 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
Assertion
Ref Expression
fprodf1o (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
Distinct variable groups:   𝐴,π‘˜,𝑛   𝐡,𝑛   𝐢,𝑛   𝐷,π‘˜   𝑛,𝐹   π‘˜,𝐺   π‘˜,𝑛,πœ‘
Allowed substitution hints:   𝐡(π‘˜)   𝐢(π‘˜)   𝐷(𝑛)   𝐹(π‘˜)   𝐺(𝑛)

Proof of Theorem fprodf1o
Dummy variables 𝑓 π‘š are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prod0 15883 . . . 4 βˆπ‘˜ ∈ βˆ… 𝐡 = 1
2 fprodf1o.3 . . . . . . . . 9 (πœ‘ β†’ 𝐹:𝐢–1-1-onto→𝐴)
32adantr 481 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:𝐢–1-1-onto→𝐴)
4 f1oeq2 6819 . . . . . . . . 9 (𝐢 = βˆ… β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:βˆ…β€“1-1-onto→𝐴))
54adantl 482 . . . . . . . 8 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ (𝐹:𝐢–1-1-onto→𝐴 ↔ 𝐹:βˆ…β€“1-1-onto→𝐴))
63, 5mpbid 231 . . . . . . 7 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:βˆ…β€“1-1-onto→𝐴)
7 f1ofo 6837 . . . . . . 7 (𝐹:βˆ…β€“1-1-onto→𝐴 β†’ 𝐹:βˆ…β€“onto→𝐴)
86, 7syl 17 . . . . . 6 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐹:βˆ…β€“onto→𝐴)
9 fo00 6866 . . . . . . 7 (𝐹:βˆ…β€“onto→𝐴 ↔ (𝐹 = βˆ… ∧ 𝐴 = βˆ…))
109simprbi 497 . . . . . 6 (𝐹:βˆ…β€“onto→𝐴 β†’ 𝐴 = βˆ…)
118, 10syl 17 . . . . 5 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ 𝐴 = βˆ…)
1211prodeq1d 15861 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘˜ ∈ βˆ… 𝐡)
13 prodeq1 15849 . . . . . 6 (𝐢 = βˆ… β†’ βˆπ‘› ∈ 𝐢 𝐷 = βˆπ‘› ∈ βˆ… 𝐷)
14 prod0 15883 . . . . . 6 βˆπ‘› ∈ βˆ… 𝐷 = 1
1513, 14eqtrdi 2788 . . . . 5 (𝐢 = βˆ… β†’ βˆπ‘› ∈ 𝐢 𝐷 = 1)
1615adantl 482 . . . 4 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘› ∈ 𝐢 𝐷 = 1)
171, 12, 163eqtr4a 2798 . . 3 ((πœ‘ ∧ 𝐢 = βˆ…) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
1817ex 413 . 2 (πœ‘ β†’ (𝐢 = βˆ… β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
19 2fveq3 6893 . . . . . . . 8 (π‘š = (π‘“β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
20 simprl 769 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (β™―β€˜πΆ) ∈ β„•)
21 simprr 771 . . . . . . . 8 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)
22 f1of 6830 . . . . . . . . . . . 12 (𝐹:𝐢–1-1-onto→𝐴 β†’ 𝐹:𝐢⟢𝐴)
232, 22syl 17 . . . . . . . . . . 11 (πœ‘ β†’ 𝐹:𝐢⟢𝐴)
2423ffvelcdmda 7083 . . . . . . . . . 10 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ (πΉβ€˜π‘š) ∈ 𝐴)
25 fprodf1o.5 . . . . . . . . . . . 12 ((πœ‘ ∧ π‘˜ ∈ 𝐴) β†’ 𝐡 ∈ β„‚)
2625fmpttd 7111 . . . . . . . . . . 11 (πœ‘ β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
2726ffvelcdmda 7083 . . . . . . . . . 10 ((πœ‘ ∧ (πΉβ€˜π‘š) ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2824, 27syldan 591 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
2928adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) ∈ β„‚)
30 simpr 485 . . . . . . . . . . . 12 (((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)
31 f1oco 6853 . . . . . . . . . . . 12 ((𝐹:𝐢–1-1-onto→𝐴 ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
322, 30, 31syl2an 596 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴)
33 f1of 6830 . . . . . . . . . . 11 ((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))–1-1-onto→𝐴 β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
3432, 33syl 17 . . . . . . . . . 10 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴)
35 fvco3 6987 . . . . . . . . . 10 (((𝐹 ∘ 𝑓):(1...(β™―β€˜πΆ))⟢𝐴 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
3634, 35sylan 580 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
37 f1of 6830 . . . . . . . . . . . . 13 (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
3837adantl 482 . . . . . . . . . . . 12 (((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
3938adantl 482 . . . . . . . . . . 11 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ 𝑓:(1...(β™―β€˜πΆ))⟢𝐢)
40 fvco3 6987 . . . . . . . . . . 11 ((𝑓:(1...(β™―β€˜πΆ))⟢𝐢 ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
4139, 40sylan 580 . . . . . . . . . 10 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((𝐹 ∘ 𝑓)β€˜π‘›) = (πΉβ€˜(π‘“β€˜π‘›)))
4241fveq2d 6892 . . . . . . . . 9 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4336, 42eqtrd 2772 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ 𝑛 ∈ (1...(β™―β€˜πΆ))) β†’ (((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓))β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜(π‘“β€˜π‘›))))
4419, 20, 21, 29, 43fprod 15881 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓)))β€˜(β™―β€˜πΆ)))
45 fprodf1o.4 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) = 𝐺)
4623ffvelcdmda 7083 . . . . . . . . . . . . . 14 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ (πΉβ€˜π‘›) ∈ 𝐴)
4745, 46eqeltrrd 2834 . . . . . . . . . . . . 13 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ 𝐺 ∈ 𝐴)
48 fprodf1o.1 . . . . . . . . . . . . . 14 (π‘˜ = 𝐺 β†’ 𝐡 = 𝐷)
49 eqid 2732 . . . . . . . . . . . . . 14 (π‘˜ ∈ 𝐴 ↦ 𝐡) = (π‘˜ ∈ 𝐴 ↦ 𝐡)
5048, 49fvmpti 6994 . . . . . . . . . . . . 13 (𝐺 ∈ 𝐴 β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ) = ( I β€˜π·))
5147, 50syl 17 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ) = ( I β€˜π·))
5245fveq2d 6892 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜πΊ))
53 eqid 2732 . . . . . . . . . . . . . 14 (𝑛 ∈ 𝐢 ↦ 𝐷) = (𝑛 ∈ 𝐢 ↦ 𝐷)
5453fvmpt2i 7005 . . . . . . . . . . . . 13 (𝑛 ∈ 𝐢 β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ( I β€˜π·))
5554adantl 482 . . . . . . . . . . . 12 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ( I β€˜π·))
5651, 52, 553eqtr4rd 2783 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑛 ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
5756ralrimiva 3146 . . . . . . . . . 10 (πœ‘ β†’ βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)))
58 nffvmpt1 6899 . . . . . . . . . . . 12 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š)
5958nfeq1 2918 . . . . . . . . . . 11 Ⅎ𝑛((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))
60 fveq2 6888 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
61 2fveq3 6893 . . . . . . . . . . . 12 (𝑛 = π‘š β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6260, 61eqeq12d 2748 . . . . . . . . . . 11 (𝑛 = π‘š β†’ (((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) ↔ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6359, 62rspc 3600 . . . . . . . . . 10 (π‘š ∈ 𝐢 β†’ (βˆ€π‘› ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘›) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘›)) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š))))
6457, 63mpan9 507 . . . . . . . . 9 ((πœ‘ ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6564adantlr 713 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐢) β†’ ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
6665prodeq2dv 15863 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = βˆπ‘š ∈ 𝐢 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜(πΉβ€˜π‘š)))
67 fveq2 6888 . . . . . . . 8 (π‘š = ((𝐹 ∘ 𝑓)β€˜π‘›) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜((𝐹 ∘ 𝑓)β€˜π‘›)))
6826adantr 481 . . . . . . . . 9 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ (π‘˜ ∈ 𝐴 ↦ 𝐡):π΄βŸΆβ„‚)
6968ffvelcdmda 7083 . . . . . . . 8 (((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) ∧ π‘š ∈ 𝐴) β†’ ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) ∈ β„‚)
7067, 20, 32, 69, 36fprod 15881 . . . . . . 7 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = (seq1( Β· , ((π‘˜ ∈ 𝐴 ↦ 𝐡) ∘ (𝐹 ∘ 𝑓)))β€˜(β™―β€˜πΆ)))
7144, 66, 703eqtr4rd 2783 . . . . . 6 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š))
72 prodfc 15885 . . . . . 6 βˆπ‘š ∈ 𝐴 ((π‘˜ ∈ 𝐴 ↦ 𝐡)β€˜π‘š) = βˆπ‘˜ ∈ 𝐴 𝐡
73 prodfc 15885 . . . . . 6 βˆπ‘š ∈ 𝐢 ((𝑛 ∈ 𝐢 ↦ 𝐷)β€˜π‘š) = βˆπ‘› ∈ 𝐢 𝐷
7471, 72, 733eqtr3g 2795 . . . . 5 ((πœ‘ ∧ ((β™―β€˜πΆ) ∈ β„• ∧ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
7574expr 457 . . . 4 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
7675exlimdv 1936 . . 3 ((πœ‘ ∧ (β™―β€˜πΆ) ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢 β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
7776expimpd 454 . 2 (πœ‘ β†’ (((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢) β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷))
78 fprodf1o.2 . . 3 (πœ‘ β†’ 𝐢 ∈ Fin)
79 fz1f1o 15652 . . 3 (𝐢 ∈ Fin β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8078, 79syl 17 . 2 (πœ‘ β†’ (𝐢 = βˆ… ∨ ((β™―β€˜πΆ) ∈ β„• ∧ βˆƒπ‘“ 𝑓:(1...(β™―β€˜πΆ))–1-1-onto→𝐢)))
8118, 77, 80mpjaod 858 1 (πœ‘ β†’ βˆπ‘˜ ∈ 𝐴 𝐡 = βˆπ‘› ∈ 𝐢 𝐷)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  βˆ€wral 3061  βˆ…c0 4321   ↦ cmpt 5230   I cid 5572   ∘ ccom 5679  βŸΆwf 6536  β€“ontoβ†’wfo 6538  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  Fincfn 8935  β„‚cc 11104  1c1 11107   Β· cmul 11111  β„•cn 12208  ...cfz 13480  seqcseq 13962  β™―chash 14286  βˆcprod 15845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-prod 15846
This theorem is referenced by:  fprodss  15888  fprodshft  15916  fprodrev  15917  fprod2dlem  15920  fprodcnv  15923  gausslemma2dlem1  26858  hgt750lemg  33654
  Copyright terms: Public domain W3C validator