MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 29355
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.)
Assertion
Ref Expression
clwwlkvbij ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑀   𝑓,𝑁,𝑀   𝑓,𝑉   𝑓,𝑋,𝑀
Allowed substitution hint:   𝑉(𝑀)

Proof of Theorem clwwlkvbij
Dummy variables π‘₯ 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7438 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 7223 . . . 4 (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) ∈ V
32resex 6027 . . 3 ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}) ∈ V
4 eqid 2732 . . . . . 6 (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) = (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁))
5 eqid 2732 . . . . . . 7 {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} = {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)}
65, 4clwwlkf1o 29293 . . . . . 6 (𝑁 ∈ β„• β†’ (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)):{π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)}–1-1-ontoβ†’(𝑁 ClWWalksN 𝐺))
7 fveq1 6887 . . . . . . . . 9 (𝑦 = (𝑀 prefix 𝑁) β†’ (π‘¦β€˜0) = ((𝑀 prefix 𝑁)β€˜0))
87eqeq1d 2734 . . . . . . . 8 (𝑦 = (𝑀 prefix 𝑁) β†’ ((π‘¦β€˜0) = 𝑋 ↔ ((𝑀 prefix 𝑁)β€˜0) = 𝑋))
983ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ 𝑦 = (𝑀 prefix 𝑁)) β†’ ((π‘¦β€˜0) = 𝑋 ↔ ((𝑀 prefix 𝑁)β€˜0) = 𝑋))
10 fveq2 6888 . . . . . . . . . . . . . 14 (π‘₯ = 𝑀 β†’ (lastSβ€˜π‘₯) = (lastSβ€˜π‘€))
11 fveq1 6887 . . . . . . . . . . . . . 14 (π‘₯ = 𝑀 β†’ (π‘₯β€˜0) = (π‘€β€˜0))
1210, 11eqeq12d 2748 . . . . . . . . . . . . 13 (π‘₯ = 𝑀 β†’ ((lastSβ€˜π‘₯) = (π‘₯β€˜0) ↔ (lastSβ€˜π‘€) = (π‘€β€˜0)))
1312elrab 3682 . . . . . . . . . . . 12 (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↔ (𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)))
14 eqid 2732 . . . . . . . . . . . . . . 15 (Vtxβ€˜πΊ) = (Vtxβ€˜πΊ)
15 eqid 2732 . . . . . . . . . . . . . . 15 (Edgβ€˜πΊ) = (Edgβ€˜πΊ)
1614, 15wwlknp 29086 . . . . . . . . . . . . . 14 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)))
17 simpll 765 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ 𝑀 ∈ Word (Vtxβ€˜πΊ))
18 nnz 12575 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„• β†’ 𝑁 ∈ β„€)
19 uzid 12833 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„€ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘))
20 peano2uz 12881 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (β„€β‰₯β€˜π‘) β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„• β†’ (𝑁 + 1) ∈ (β„€β‰₯β€˜π‘))
22 elfz1end 13527 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ β„• ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 215 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...𝑁))
24 fzss2 13537 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (β„€β‰₯β€˜π‘) β†’ (1...𝑁) βŠ† (1...(𝑁 + 1)))
2524sselda 3981 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (β„€β‰₯β€˜π‘) ∧ 𝑁 ∈ (1...𝑁)) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ β„• β†’ 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 7413 . . . . . . . . . . . . . . . . . . . . 21 ((β™―β€˜π‘€) = (𝑁 + 1) β†’ (1...(β™―β€˜π‘€)) = (1...(𝑁 + 1)))
2928eleq2d 2819 . . . . . . . . . . . . . . . . . . . 20 ((β™―β€˜π‘€) = (𝑁 + 1) β†’ (𝑁 ∈ (1...(β™―β€˜π‘€)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) β†’ (𝑁 ∈ (1...(β™―β€˜π‘€)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ (𝑁 ∈ (1...(β™―β€˜π‘€)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 256 . . . . . . . . . . . . . . . . 17 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ 𝑁 ∈ (1...(β™―β€˜π‘€)))
3317, 32jca 512 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) ∧ 𝑁 ∈ β„•) β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€))))
3433ex 413 . . . . . . . . . . . . . . 15 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1)) β†’ (𝑁 ∈ β„• β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€)))))
35343adant3 1132 . . . . . . . . . . . . . 14 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ (β™―β€˜π‘€) = (𝑁 + 1) ∧ βˆ€π‘– ∈ (0..^𝑁){(π‘€β€˜π‘–), (π‘€β€˜(𝑖 + 1))} ∈ (Edgβ€˜πΊ)) β†’ (𝑁 ∈ β„• β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑀 ∈ (𝑁 WWalksN 𝐺) β†’ (𝑁 ∈ β„• β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€)))))
3736adantr 481 . . . . . . . . . . . 12 ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) β†’ (𝑁 ∈ β„• β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€)))))
3813, 37sylbi 216 . . . . . . . . . . 11 (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} β†’ (𝑁 ∈ β„• β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€)))))
3938impcom 408 . . . . . . . . . 10 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)}) β†’ (𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€))))
40 pfxfv0 14638 . . . . . . . . . 10 ((𝑀 ∈ Word (Vtxβ€˜πΊ) ∧ 𝑁 ∈ (1...(β™―β€˜π‘€))) β†’ ((𝑀 prefix 𝑁)β€˜0) = (π‘€β€˜0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)}) β†’ ((𝑀 prefix 𝑁)β€˜0) = (π‘€β€˜0))
4241eqeq1d 2734 . . . . . . . 8 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)}) β†’ (((𝑀 prefix 𝑁)β€˜0) = 𝑋 ↔ (π‘€β€˜0) = 𝑋))
43423adant3 1132 . . . . . . 7 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ 𝑦 = (𝑀 prefix 𝑁)) β†’ (((𝑀 prefix 𝑁)β€˜0) = 𝑋 ↔ (π‘€β€˜0) = 𝑋))
449, 43bitrd 278 . . . . . 6 ((𝑁 ∈ β„• ∧ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ 𝑦 = (𝑀 prefix 𝑁)) β†’ ((π‘¦β€˜0) = 𝑋 ↔ (π‘€β€˜0) = 𝑋))
454, 6, 44f1oresrab 7121 . . . . 5 (𝑁 ∈ β„• β†’ ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘¦β€˜0) = 𝑋})
4645adantl 482 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘¦β€˜0) = 𝑋})
47 clwwlknon 29332 . . . . . 6 (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘¦β€˜0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑋(ClWWalksNOnβ€˜πΊ)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘¦β€˜0) = 𝑋})
4948f1oeq3d 6827 . . . 4 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (π‘¦β€˜0) = 𝑋}))
5046, 49mpbird 256 . . 3 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
51 f1oeq1 6818 . . . 4 (𝑓 = ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}) β†’ (𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ ((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
5251spcegv 3587 . . 3 (((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}) ∈ V β†’ (((𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ↦ (𝑀 prefix 𝑁)) β†Ύ {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}):{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
54 df-rab 3433 . . . . 5 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} = {𝑀 ∣ (𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋))}
55 anass 469 . . . . . . 7 (((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)))
5655bicomi 223 . . . . . 6 ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)) ↔ ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋))
5756abbii 2802 . . . . 5 {𝑀 ∣ (𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋))} = {𝑀 ∣ ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋)}
5813bicomi 223 . . . . . . . 8 ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ↔ 𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)})
5958anbi1i 624 . . . . . . 7 (((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋) ↔ (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ (π‘€β€˜0) = 𝑋))
6059abbii 2802 . . . . . 6 {𝑀 ∣ ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋)} = {𝑀 ∣ (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ (π‘€β€˜0) = 𝑋)}
61 df-rab 3433 . . . . . 6 {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋} = {𝑀 ∣ (𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∧ (π‘€β€˜0) = 𝑋)}
6260, 61eqtr4i 2763 . . . . 5 {𝑀 ∣ ((𝑀 ∈ (𝑁 WWalksN 𝐺) ∧ (lastSβ€˜π‘€) = (π‘€β€˜0)) ∧ (π‘€β€˜0) = 𝑋)} = {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}
6354, 57, 623eqtri 2764 . . . 4 {𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} = {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}
64 f1oeq2 6819 . . . 4 ({𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)} = {𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋} β†’ (𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ 𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
6665exbidv 1924 . 2 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ (βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁) ↔ βˆƒπ‘“ 𝑓:{𝑀 ∈ {π‘₯ ∈ (𝑁 WWalksN 𝐺) ∣ (lastSβ€˜π‘₯) = (π‘₯β€˜0)} ∣ (π‘€β€˜0) = 𝑋}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁)))
6753, 66mpbird 256 1 ((𝑋 ∈ 𝑉 ∧ 𝑁 ∈ β„•) β†’ βˆƒπ‘“ 𝑓:{𝑀 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastSβ€˜π‘€) = (π‘€β€˜0) ∧ (π‘€β€˜0) = 𝑋)}–1-1-ontoβ†’(𝑋(ClWWalksNOnβ€˜πΊ)𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541  βˆƒwex 1781   ∈ wcel 2106  {cab 2709  βˆ€wral 3061  {crab 3432  Vcvv 3474  {cpr 4629   ↦ cmpt 5230   β†Ύ cres 5677  β€“1-1-ontoβ†’wf1o 6539  β€˜cfv 6540  (class class class)co 7405  0cc0 11106  1c1 11107   + caddc 11109  β„•cn 12208  β„€cz 12554  β„€β‰₯cuz 12818  ...cfz 13480  ..^cfzo 13623  β™―chash 14286  Word cword 14460  lastSclsw 14508   prefix cpfx 14616  Vtxcvtx 28245  Edgcedg 28296   WWalksN cwwlksn 29069   ClWWalksN cclwwlkn 29266  ClWWalksNOncclwwlknon 29329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fzo 13624  df-hash 14287  df-word 14461  df-lsw 14509  df-concat 14517  df-s1 14542  df-substr 14587  df-pfx 14617  df-wwlks 29073  df-wwlksn 29074  df-clwwlk 29224  df-clwwlkn 29267  df-clwwlknon 29330
This theorem is referenced by:  numclwwlkqhash  29617
  Copyright terms: Public domain W3C validator