MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 30088
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.)
Assertion
Ref Expression
clwwlkvbij ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉   𝑓,𝑋,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlkvbij
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7379 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 7159 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ∈ V
32resex 5978 . . 3 ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V
4 eqid 2731 . . . . . 6 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) = (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁))
5 eqid 2731 . . . . . . 7 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}
65, 4clwwlkf1o 30026 . . . . . 6 (𝑁 ∈ ℕ → (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)):{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}–1-1-onto→(𝑁 ClWWalksN 𝐺))
7 fveq1 6821 . . . . . . . . 9 (𝑦 = (𝑤 prefix 𝑁) → (𝑦‘0) = ((𝑤 prefix 𝑁)‘0))
87eqeq1d 2733 . . . . . . . 8 (𝑦 = (𝑤 prefix 𝑁) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
983ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
10 fveq2 6822 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (lastS‘𝑥) = (lastS‘𝑤))
11 fveq1 6821 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
1210, 11eqeq12d 2747 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((lastS‘𝑥) = (𝑥‘0) ↔ (lastS‘𝑤) = (𝑤‘0)))
1312elrab 3647 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)))
14 eqid 2731 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2731 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15wwlknp 29819 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑤 ∈ Word (Vtx‘𝐺))
18 nnz 12486 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
19 uzid 12744 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
20 peano2uz 12796 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ𝑁))
22 elfz1end 13451 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
24 fzss2 13461 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑁 + 1)))
2524sselda 3934 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (ℤ𝑁) ∧ 𝑁 ∈ (1...𝑁)) → 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 7354 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 1) → (1...(♯‘𝑤)) = (1...(𝑁 + 1)))
2928eleq2d 2817 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(♯‘𝑤)))
3317, 32jca 511 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
3433ex 412 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
35343adant3 1132 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3736adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3813, 37sylbi 217 . . . . . . . . . . 11 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3938impcom 407 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
40 pfxfv0 14596 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4241eqeq1d 2733 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
43423adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
449, 43bitrd 279 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
454, 6, 44f1oresrab 7060 . . . . 5 (𝑁 ∈ ℕ → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4645adantl 481 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
47 clwwlknon 30065 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4948f1oeq3d 6760 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}))
5046, 49mpbird 257 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
51 f1oeq1 6751 . . . 4 (𝑓 = ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) → (𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
5251spcegv 3552 . . 3 (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
54 df-rab 3396 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))}
55 anass 468 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
5655bicomi 224 . . . . . 6 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) ↔ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋))
5756abbii 2798 . . . . 5 {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))} = {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)}
5813bicomi 224 . . . . . . . 8 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)})
5958anbi1i 624 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋))
6059abbii 2798 . . . . . 6 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
61 df-rab 3396 . . . . . 6 {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
6260, 61eqtr4i 2757 . . . . 5 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
6354, 57, 623eqtri 2758 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
64 f1oeq2 6752 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6665exbidv 1922 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6753, 66mpbird 257 1 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  {crab 3395  Vcvv 3436  {cpr 4578  cmpt 5172  cres 5618  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  0cc0 11003  1c1 11004   + caddc 11006  cn 12122  cz 12465  cuz 12729  ...cfz 13404  ..^cfzo 13551  chash 14234  Word cword 14417  lastSclsw 14466   prefix cpfx 14575  Vtxcvtx 28972  Edgcedg 29023   WWalksN cwwlksn 29802   ClWWalksN cclwwlkn 29999  ClWWalksNOncclwwlknon 30062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-rp 12888  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-lsw 14467  df-concat 14475  df-s1 14501  df-substr 14546  df-pfx 14576  df-wwlks 29806  df-wwlksn 29807  df-clwwlk 29957  df-clwwlkn 30000  df-clwwlknon 30063
This theorem is referenced by:  numclwwlkqhash  30350
  Copyright terms: Public domain W3C validator