MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 30049
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.)
Assertion
Ref Expression
clwwlkvbij ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉   𝑓,𝑋,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlkvbij
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7423 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 7202 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ∈ V
32resex 6003 . . 3 ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V
4 eqid 2730 . . . . . 6 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) = (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁))
5 eqid 2730 . . . . . . 7 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}
65, 4clwwlkf1o 29987 . . . . . 6 (𝑁 ∈ ℕ → (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)):{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}–1-1-onto→(𝑁 ClWWalksN 𝐺))
7 fveq1 6860 . . . . . . . . 9 (𝑦 = (𝑤 prefix 𝑁) → (𝑦‘0) = ((𝑤 prefix 𝑁)‘0))
87eqeq1d 2732 . . . . . . . 8 (𝑦 = (𝑤 prefix 𝑁) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
983ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
10 fveq2 6861 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (lastS‘𝑥) = (lastS‘𝑤))
11 fveq1 6860 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
1210, 11eqeq12d 2746 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((lastS‘𝑥) = (𝑥‘0) ↔ (lastS‘𝑤) = (𝑤‘0)))
1312elrab 3662 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)))
14 eqid 2730 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2730 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15wwlknp 29780 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑤 ∈ Word (Vtx‘𝐺))
18 nnz 12557 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
19 uzid 12815 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
20 peano2uz 12867 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ𝑁))
22 elfz1end 13522 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
24 fzss2 13532 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑁 + 1)))
2524sselda 3949 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (ℤ𝑁) ∧ 𝑁 ∈ (1...𝑁)) → 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 1) → (1...(♯‘𝑤)) = (1...(𝑁 + 1)))
2928eleq2d 2815 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(♯‘𝑤)))
3317, 32jca 511 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
3433ex 412 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
35343adant3 1132 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3736adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3813, 37sylbi 217 . . . . . . . . . . 11 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3938impcom 407 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
40 pfxfv0 14664 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4241eqeq1d 2732 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
43423adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
449, 43bitrd 279 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
454, 6, 44f1oresrab 7102 . . . . 5 (𝑁 ∈ ℕ → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4645adantl 481 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
47 clwwlknon 30026 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4948f1oeq3d 6800 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}))
5046, 49mpbird 257 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
51 f1oeq1 6791 . . . 4 (𝑓 = ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) → (𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
5251spcegv 3566 . . 3 (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
54 df-rab 3409 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))}
55 anass 468 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
5655bicomi 224 . . . . . 6 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) ↔ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋))
5756abbii 2797 . . . . 5 {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))} = {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)}
5813bicomi 224 . . . . . . . 8 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)})
5958anbi1i 624 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋))
6059abbii 2797 . . . . . 6 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
61 df-rab 3409 . . . . . 6 {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
6260, 61eqtr4i 2756 . . . . 5 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
6354, 57, 623eqtri 2757 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
64 f1oeq2 6792 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6665exbidv 1921 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6753, 66mpbird 257 1 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wral 3045  {crab 3408  Vcvv 3450  {cpr 4594  cmpt 5191  cres 5643  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  cn 12193  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622  chash 14302  Word cword 14485  lastSclsw 14534   prefix cpfx 14642  Vtxcvtx 28930  Edgcedg 28981   WWalksN cwwlksn 29763   ClWWalksN cclwwlkn 29960  ClWWalksNOncclwwlknon 30023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-hash 14303  df-word 14486  df-lsw 14535  df-concat 14543  df-s1 14568  df-substr 14613  df-pfx 14643  df-wwlks 29767  df-wwlksn 29768  df-clwwlk 29918  df-clwwlkn 29961  df-clwwlknon 30024
This theorem is referenced by:  numclwwlkqhash  30311
  Copyright terms: Public domain W3C validator