MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkvbij Structured version   Visualization version   GIF version

Theorem clwwlkvbij 30075
Description: There is a bijection between the set of closed walks of a fixed length 𝑁 on a fixed vertex 𝑋 represented by walks (as word) and the set of closed walks (as words) of the fixed length 𝑁 on the fixed vertex 𝑋. The difference between these two representations is that in the first case the fixed vertex is repeated at the end of the word, and in the second case it is not. (Contributed by Alexander van der Vekens, 29-Sep-2018.) (Revised by AV, 26-Apr-2021.) (Revised by AV, 7-Jul-2022.) (Proof shortened by AV, 2-Nov-2022.)
Assertion
Ref Expression
clwwlkvbij ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Distinct variable groups:   𝑓,𝐺,𝑤   𝑓,𝑁,𝑤   𝑓,𝑉   𝑓,𝑋,𝑤
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlkvbij
Dummy variables 𝑥 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7386 . . . . 5 (𝑁 WWalksN 𝐺) ∈ V
21mptrabex 7165 . . . 4 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ∈ V
32resex 5984 . . 3 ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V
4 eqid 2729 . . . . . 6 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) = (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁))
5 eqid 2729 . . . . . . 7 {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} = {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}
65, 4clwwlkf1o 30013 . . . . . 6 (𝑁 ∈ ℕ → (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)):{𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}–1-1-onto→(𝑁 ClWWalksN 𝐺))
7 fveq1 6825 . . . . . . . . 9 (𝑦 = (𝑤 prefix 𝑁) → (𝑦‘0) = ((𝑤 prefix 𝑁)‘0))
87eqeq1d 2731 . . . . . . . 8 (𝑦 = (𝑤 prefix 𝑁) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
983ad2ant3 1135 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ ((𝑤 prefix 𝑁)‘0) = 𝑋))
10 fveq2 6826 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (lastS‘𝑥) = (lastS‘𝑤))
11 fveq1 6825 . . . . . . . . . . . . . 14 (𝑥 = 𝑤 → (𝑥‘0) = (𝑤‘0))
1210, 11eqeq12d 2745 . . . . . . . . . . . . 13 (𝑥 = 𝑤 → ((lastS‘𝑥) = (𝑥‘0) ↔ (lastS‘𝑤) = (𝑤‘0)))
1312elrab 3650 . . . . . . . . . . . 12 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)))
14 eqid 2729 . . . . . . . . . . . . . . 15 (Vtx‘𝐺) = (Vtx‘𝐺)
15 eqid 2729 . . . . . . . . . . . . . . 15 (Edg‘𝐺) = (Edg‘𝐺)
1614, 15wwlknp 29806 . . . . . . . . . . . . . 14 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 simpll 766 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑤 ∈ Word (Vtx‘𝐺))
18 nnz 12510 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
19 uzid 12768 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
20 peano2uz 12820 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ (ℤ𝑁) → (𝑁 + 1) ∈ (ℤ𝑁))
2118, 19, 203syl 18 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (ℤ𝑁))
22 elfz1end 13475 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ ↔ 𝑁 ∈ (1...𝑁))
2322biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ → 𝑁 ∈ (1...𝑁))
24 fzss2 13485 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 + 1) ∈ (ℤ𝑁) → (1...𝑁) ⊆ (1...(𝑁 + 1)))
2524sselda 3937 . . . . . . . . . . . . . . . . . . . 20 (((𝑁 + 1) ∈ (ℤ𝑁) ∧ 𝑁 ∈ (1...𝑁)) → 𝑁 ∈ (1...(𝑁 + 1)))
2621, 23, 25syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ → 𝑁 ∈ (1...(𝑁 + 1)))
2726adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(𝑁 + 1)))
28 oveq2 7361 . . . . . . . . . . . . . . . . . . . . 21 ((♯‘𝑤) = (𝑁 + 1) → (1...(♯‘𝑤)) = (1...(𝑁 + 1)))
2928eleq2d 2814 . . . . . . . . . . . . . . . . . . . 20 ((♯‘𝑤) = (𝑁 + 1) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3029adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3130adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑁 ∈ (1...(♯‘𝑤)) ↔ 𝑁 ∈ (1...(𝑁 + 1))))
3227, 31mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ (1...(♯‘𝑤)))
3317, 32jca 511 . . . . . . . . . . . . . . . 16 (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) ∧ 𝑁 ∈ ℕ) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
3433ex 412 . . . . . . . . . . . . . . 15 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
35343adant3 1132 . . . . . . . . . . . . . 14 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = (𝑁 + 1) ∧ ∀𝑖 ∈ (0..^𝑁){(𝑤𝑖), (𝑤‘(𝑖 + 1))} ∈ (Edg‘𝐺)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3616, 35syl 17 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑁 WWalksN 𝐺) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3736adantr 480 . . . . . . . . . . . 12 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3813, 37sylbi 217 . . . . . . . . . . 11 (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} → (𝑁 ∈ ℕ → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤)))))
3938impcom 407 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))))
40 pfxfv0 14616 . . . . . . . . . 10 ((𝑤 ∈ Word (Vtx‘𝐺) ∧ 𝑁 ∈ (1...(♯‘𝑤))) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4139, 40syl 17 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → ((𝑤 prefix 𝑁)‘0) = (𝑤‘0))
4241eqeq1d 2731 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)}) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
43423adant3 1132 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → (((𝑤 prefix 𝑁)‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
449, 43bitrd 279 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ 𝑦 = (𝑤 prefix 𝑁)) → ((𝑦‘0) = 𝑋 ↔ (𝑤‘0) = 𝑋))
454, 6, 44f1oresrab 7065 . . . . 5 (𝑁 ∈ ℕ → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4645adantl 481 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
47 clwwlknon 30052 . . . . . 6 (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}
4847a1i 11 . . . . 5 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋(ClWWalksNOn‘𝐺)𝑁) = {𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋})
4948f1oeq3d 6765 . . . 4 ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→{𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑦‘0) = 𝑋}))
5046, 49mpbird 257 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
51 f1oeq1 6756 . . . 4 (𝑓 = ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) → (𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
5251spcegv 3554 . . 3 (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}) ∈ V → (((𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ↦ (𝑤 prefix 𝑁)) ↾ {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}):{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
533, 50, 52mpsyl 68 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
54 df-rab 3397 . . . . 5 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))}
55 anass 468 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)))
5655bicomi 224 . . . . . 6 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)) ↔ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋))
5756abbii 2796 . . . . 5 {𝑤 ∣ (𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋))} = {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)}
5813bicomi 224 . . . . . . . 8 ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ↔ 𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)})
5958anbi1i 624 . . . . . . 7 (((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋) ↔ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋))
6059abbii 2796 . . . . . 6 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
61 df-rab 3397 . . . . . 6 {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} = {𝑤 ∣ (𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∧ (𝑤‘0) = 𝑋)}
6260, 61eqtr4i 2755 . . . . 5 {𝑤 ∣ ((𝑤 ∈ (𝑁 WWalksN 𝐺) ∧ (lastS‘𝑤) = (𝑤‘0)) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
6354, 57, 623eqtri 2756 . . . 4 {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}
64 f1oeq2 6757 . . . 4 ({𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)} = {𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋} → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6563, 64mp1i 13 . . 3 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6665exbidv 1921 . 2 ((𝑋𝑉𝑁 ∈ ℕ) → (∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁) ↔ ∃𝑓 𝑓:{𝑤 ∈ {𝑥 ∈ (𝑁 WWalksN 𝐺) ∣ (lastS‘𝑥) = (𝑥‘0)} ∣ (𝑤‘0) = 𝑋}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁)))
6753, 66mpbird 257 1 ((𝑋𝑉𝑁 ∈ ℕ) → ∃𝑓 𝑓:{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((lastS‘𝑤) = (𝑤‘0) ∧ (𝑤‘0) = 𝑋)}–1-1-onto→(𝑋(ClWWalksNOn‘𝐺)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wral 3044  {crab 3396  Vcvv 3438  {cpr 4581  cmpt 5176  cres 5625  1-1-ontowf1o 6485  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   + caddc 11031  cn 12146  cz 12489  cuz 12753  ...cfz 13428  ..^cfzo 13575  chash 14255  Word cword 14438  lastSclsw 14487   prefix cpfx 14595  Vtxcvtx 28959  Edgcedg 29010   WWalksN cwwlksn 29789   ClWWalksN cclwwlkn 29986  ClWWalksNOncclwwlknon 30049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-wwlks 29793  df-wwlksn 29794  df-clwwlk 29944  df-clwwlkn 29987  df-clwwlknon 30050
This theorem is referenced by:  numclwwlkqhash  30337
  Copyright terms: Public domain W3C validator