| Step | Hyp | Ref
| Expression |
| 1 | | nfcv 2905 |
. . . 4
⊢
Ⅎ𝑚𝐴 |
| 2 | | nfcsb1v 3923 |
. . . 4
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 |
| 3 | | csbeq1a 3913 |
. . . 4
⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) |
| 4 | 1, 2, 3 | cbvprodi 15951 |
. . 3
⊢
∏𝑘 ∈
{𝑀}𝐴 = ∏𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
| 5 | | csbeq1 3902 |
. . . 4
⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 6 | | 1nn 12277 |
. . . . 5
⊢ 1 ∈
ℕ |
| 7 | 6 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈
ℕ) |
| 8 | | 1z 12647 |
. . . . . 6
⊢ 1 ∈
ℤ |
| 9 | | f1osng 6889 |
. . . . . . 7
⊢ ((1
∈ ℤ ∧ 𝑀
∈ 𝑉) → {〈1,
𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 10 | | fzsn 13606 |
. . . . . . . . 9
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 11 | 8, 10 | ax-mp 5 |
. . . . . . . 8
⊢ (1...1) =
{1} |
| 12 | | f1oeq2 6837 |
. . . . . . . 8
⊢ ((1...1)
= {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) |
| 13 | 11, 12 | ax-mp 5 |
. . . . . . 7
⊢
({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 14 | 9, 13 | sylibr 234 |
. . . . . 6
⊢ ((1
∈ ℤ ∧ 𝑀
∈ 𝑉) → {〈1,
𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 15 | 8, 14 | mpan 690 |
. . . . 5
⊢ (𝑀 ∈ 𝑉 → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 17 | | velsn 4642 |
. . . . . 6
⊢ (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀) |
| 18 | | csbeq1 3902 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 19 | | prodsnf.1 |
. . . . . . . . . 10
⊢
Ⅎ𝑘𝐵 |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑘𝐵) |
| 21 | | prodsnf.2 |
. . . . . . . . 9
⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
| 22 | 20, 21 | csbiegf 3932 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 24 | 18, 23 | sylan9eqr 2799 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → ⦋𝑚 / 𝑘⦌𝐴 = 𝐵) |
| 25 | 17, 24 | sylan2b 594 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = 𝐵) |
| 26 | | simplr 769 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) |
| 27 | 25, 26 | eqeltrd 2841 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
| 28 | 11 | eleq2i 2833 |
. . . . . 6
⊢ (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1}) |
| 29 | | velsn 4642 |
. . . . . 6
⊢ (𝑛 ∈ {1} ↔ 𝑛 = 1) |
| 30 | 28, 29 | bitri 275 |
. . . . 5
⊢ (𝑛 ∈ (1...1) ↔ 𝑛 = 1) |
| 31 | | fvsng 7200 |
. . . . . . . . . . 11
⊢ ((1
∈ ℤ ∧ 𝑀
∈ 𝑉) → ({〈1,
𝑀〉}‘1) = 𝑀) |
| 32 | 8, 31 | mpan 690 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝑉 → ({〈1, 𝑀〉}‘1) = 𝑀) |
| 33 | 32 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝑀〉}‘1) = 𝑀) |
| 34 | 33 | csbeq1d 3903 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) →
⦋({〈1, 𝑀〉}‘1) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 35 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) |
| 36 | | fvsng 7200 |
. . . . . . . . 9
⊢ ((1
∈ ℤ ∧ 𝐵
∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
| 37 | 8, 35, 36 | sylancr 587 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
| 38 | 23, 34, 37 | 3eqtr4rd 2788 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) =
⦋({〈1, 𝑀〉}‘1) / 𝑘⦌𝐴) |
| 39 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑛 = 1 → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
| 40 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑛 = 1 → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
| 41 | 40 | csbeq1d 3903 |
. . . . . . . 8
⊢ (𝑛 = 1 →
⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘1) / 𝑘⦌𝐴) |
| 42 | 39, 41 | eqeq12d 2753 |
. . . . . . 7
⊢ (𝑛 = 1 → (({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 ↔ ({〈1, 𝐵〉}‘1) = ⦋({〈1,
𝑀〉}‘1) / 𝑘⦌𝐴)) |
| 43 | 38, 42 | syl5ibrcom 247 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (𝑛 = 1 → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴)) |
| 44 | 43 | imp 406 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 45 | 30, 44 | sylan2b 594 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 46 | 5, 7, 16, 27, 45 | fprod 15977 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( · , {〈1, 𝐵〉})‘1)) |
| 47 | 4, 46 | eqtrid 2789 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , {〈1, 𝐵〉})‘1)) |
| 48 | 8, 37 | seq1i 14056 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (seq1( · ,
{〈1, 𝐵〉})‘1) = 𝐵) |
| 49 | 47, 48 | eqtrd 2777 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵) |