MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodsnf Structured version   Visualization version   GIF version

Theorem prodsnf 16000
Description: A product of a singleton is the term. A version of prodsn 15998 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
prodsnf.1 𝑘𝐵
prodsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsnf ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem prodsnf
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . . 4 𝑚𝐴
2 nfcsb1v 3923 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3913 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 15951 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3902 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 12277 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 12647 . . . . . 6 1 ∈ ℤ
9 f1osng 6889 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 13606 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 6837 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 234 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 690 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 480 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 4642 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3902 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 prodsnf.1 . . . . . . . . . 10 𝑘𝐵
2019a1i 11 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
21 prodsnf.2 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3932 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322adantr 480 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2418, 23sylan9eqr 2799 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2517, 24sylan2b 594 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
26 simplr 769 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2725, 26eqeltrd 2841 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2811eleq2i 2833 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
29 velsn 4642 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
3028, 29bitri 275 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
31 fvsng 7200 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
328, 31mpan 690 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332adantr 480 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3433csbeq1d 3903 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
35 simpr 484 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 7200 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
378, 35, 36sylancr 587 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3823, 34, 373eqtr4rd 2788 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
39 fveq2 6906 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
40 fveq2 6906 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4140csbeq1d 3903 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4239, 41eqeq12d 2753 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4338, 42syl5ibrcom 247 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4443imp 406 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4530, 44sylan2b 594 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
465, 7, 16, 27, 45fprod 15977 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
474, 46eqtrid 2789 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
488, 37seq1i 14056 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , {⟨1, 𝐵⟩})‘1) = 𝐵)
4947, 48eqtrd 2777 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wnfc 2890  csb 3899  {csn 4626  cop 4632  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  1c1 11156   · cmul 11160  cn 12266  cz 12613  ...cfz 13547  seqcseq 14042  cprod 15939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-prod 15940
This theorem is referenced by:  fprodsplitsn  16025
  Copyright terms: Public domain W3C validator