Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangval | Structured version Visualization version GIF version |
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangval | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6705 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝑥)) | |
2 | f1oeq3 6706 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) | |
3 | 1, 2 | bitrd 278 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
4 | raleq 3342 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)) | |
5 | 3, 4 | anbi12d 631 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦))) |
6 | 5 | abbidv 2807 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) |
7 | 6 | fveq2d 6778 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
8 | derang.d | . 2 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
9 | fvex 6787 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) ∈ V | |
10 | 7, 8, 9 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 ≠ wne 2943 ∀wral 3064 ↦ cmpt 5157 –1-1-onto→wf1o 6432 ‘cfv 6433 Fincfn 8733 ♯chash 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 |
This theorem is referenced by: derang0 33131 derangsn 33132 derangenlem 33133 subfaclefac 33138 subfacp1lem3 33144 subfacp1lem5 33146 subfacp1lem6 33147 |
Copyright terms: Public domain | W3C validator |