![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangval | Structured version Visualization version GIF version |
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangval | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6838 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝑥)) | |
2 | f1oeq3 6839 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) | |
3 | 1, 2 | bitrd 279 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
4 | raleq 3321 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)) | |
5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦))) |
6 | 5 | abbidv 2806 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) |
7 | 6 | fveq2d 6911 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
8 | derang.d | . 2 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
9 | fvex 6920 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) ∈ V | |
10 | 7, 8, 9 | fvmpt 7016 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ≠ wne 2938 ∀wral 3059 ↦ cmpt 5231 –1-1-onto→wf1o 6562 ‘cfv 6563 Fincfn 8984 ♯chash 14366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 |
This theorem is referenced by: derang0 35154 derangsn 35155 derangenlem 35156 subfaclefac 35161 subfacp1lem3 35167 subfacp1lem5 35169 subfacp1lem6 35170 |
Copyright terms: Public domain | W3C validator |