Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > derangval | Structured version Visualization version GIF version |
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
Ref | Expression |
---|---|
derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
Ref | Expression |
---|---|
derangval | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oeq2 6689 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝑥)) | |
2 | f1oeq3 6690 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) | |
3 | 1, 2 | bitrd 278 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
4 | raleq 3333 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)) | |
5 | 3, 4 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦))) |
6 | 5 | abbidv 2808 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) |
7 | 6 | fveq2d 6760 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
8 | derang.d | . 2 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
9 | fvex 6769 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) ∈ V | |
10 | 7, 8, 9 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ∀wral 3063 ↦ cmpt 5153 –1-1-onto→wf1o 6417 ‘cfv 6418 Fincfn 8691 ♯chash 13972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: derang0 33031 derangsn 33032 derangenlem 33033 subfaclefac 33038 subfacp1lem3 33044 subfacp1lem5 33046 subfacp1lem6 33047 |
Copyright terms: Public domain | W3C validator |