Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangval Structured version   Visualization version   GIF version

Theorem derangval 33129
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangval (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Distinct variable group:   𝑥,𝑓,𝑦,𝐴
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangval
StepHypRef Expression
1 f1oeq2 6705 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝑥))
2 f1oeq3 6706 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
31, 2bitrd 278 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
4 raleq 3342 . . . . 5 (𝑥 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦))
53, 4anbi12d 631 . . . 4 (𝑥 = 𝐴 → ((𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦) ↔ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)))
65abbidv 2807 . . 3 (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)})
76fveq2d 6778 . 2 (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
8 derang.d . 2 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
9 fvex 6787 . 2 (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ∈ V
107, 8, 9fvmpt 6875 1 (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wral 3064  cmpt 5157  1-1-ontowf1o 6432  cfv 6433  Fincfn 8733  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441
This theorem is referenced by:  derang0  33131  derangsn  33132  derangenlem  33133  subfaclefac  33138  subfacp1lem3  33144  subfacp1lem5  33146  subfacp1lem6  33147
  Copyright terms: Public domain W3C validator