Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangval Structured version   Visualization version   GIF version

Theorem derangval 35232
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangval (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Distinct variable group:   𝑥,𝑓,𝑦,𝐴
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangval
StepHypRef Expression
1 f1oeq2 6757 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝑥))
2 f1oeq3 6758 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
31, 2bitrd 279 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
4 raleq 3290 . . . . 5 (𝑥 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦))
53, 4anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦) ↔ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)))
65abbidv 2799 . . 3 (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)})
76fveq2d 6832 . 2 (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
8 derang.d . 2 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
9 fvex 6841 . 2 (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ∈ V
107, 8, 9fvmpt 6935 1 (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  cmpt 5174  1-1-ontowf1o 6485  cfv 6486  Fincfn 8875  chash 14239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  derang0  35234  derangsn  35235  derangenlem  35236  subfaclefac  35241  subfacp1lem3  35247  subfacp1lem5  35249  subfacp1lem6  35250
  Copyright terms: Public domain W3C validator