Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangval Structured version   Visualization version   GIF version

Theorem derangval 32409
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangval (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Distinct variable group:   𝑥,𝑓,𝑦,𝐴
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangval
StepHypRef Expression
1 f1oeq2 6599 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝑥))
2 f1oeq3 6600 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
31, 2bitrd 281 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
4 raleq 3405 . . . . 5 (𝑥 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦))
53, 4anbi12d 632 . . . 4 (𝑥 = 𝐴 → ((𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦) ↔ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)))
65abbidv 2885 . . 3 (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)})
76fveq2d 6668 . 2 (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
8 derang.d . 2 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
9 fvex 6677 . 2 (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ∈ V
107, 8, 9fvmpt 6762 1 (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {cab 2799  wne 3016  wral 3138  cmpt 5138  1-1-ontowf1o 6348  cfv 6349  Fincfn 8503  chash 13684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357
This theorem is referenced by:  derang0  32411  derangsn  32412  derangenlem  32413  subfaclefac  32418  subfacp1lem3  32424  subfacp1lem5  32426  subfacp1lem6  32427
  Copyright terms: Public domain W3C validator