Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  derangval Structured version   Visualization version   GIF version

Theorem derangval 32527
Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.)
Hypothesis
Ref Expression
derang.d 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
Assertion
Ref Expression
derangval (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Distinct variable group:   𝑥,𝑓,𝑦,𝐴
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑓)

Proof of Theorem derangval
StepHypRef Expression
1 f1oeq2 6580 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝑥))
2 f1oeq3 6581 . . . . . 6 (𝑥 = 𝐴 → (𝑓:𝐴1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
31, 2bitrd 282 . . . . 5 (𝑥 = 𝐴 → (𝑓:𝑥1-1-onto𝑥𝑓:𝐴1-1-onto𝐴))
4 raleq 3358 . . . . 5 (𝑥 = 𝐴 → (∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦 ↔ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦))
53, 4anbi12d 633 . . . 4 (𝑥 = 𝐴 → ((𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦) ↔ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)))
65abbidv 2862 . . 3 (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)})
76fveq2d 6649 . 2 (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
8 derang.d . 2 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥1-1-onto𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) ≠ 𝑦)}))
9 fvex 6658 . 2 (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}) ∈ V
107, 8, 9fvmpt 6745 1 (𝐴 ∈ Fin → (𝐷𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴1-1-onto𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ≠ 𝑦)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  cmpt 5110  1-1-ontowf1o 6323  cfv 6324  Fincfn 8492  chash 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332
This theorem is referenced by:  derang0  32529  derangsn  32530  derangenlem  32531  subfaclefac  32536  subfacp1lem3  32542  subfacp1lem5  32544  subfacp1lem6  32545
  Copyright terms: Public domain W3C validator