| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > derangval | Structured version Visualization version GIF version | ||
| Description: Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| Ref | Expression |
|---|---|
| derang.d | ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| Ref | Expression |
|---|---|
| derangval | ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oeq2 6757 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝑥)) | |
| 2 | f1oeq3 6758 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑓:𝐴–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) | |
| 3 | 1, 2 | bitrd 279 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑓:𝑥–1-1-onto→𝑥 ↔ 𝑓:𝐴–1-1-onto→𝐴)) |
| 4 | raleq 3290 | . . . . 5 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)) | |
| 5 | 3, 4 | anbi12d 632 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦) ↔ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦))) |
| 6 | 5 | abbidv 2799 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)} = {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) |
| 7 | 6 | fveq2d 6832 | . 2 ⊢ (𝑥 = 𝐴 → (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)}) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
| 8 | derang.d | . 2 ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) | |
| 9 | fvex 6841 | . 2 ⊢ (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)}) ∈ V | |
| 10 | 7, 8, 9 | fvmpt 6935 | 1 ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ≠ wne 2929 ∀wral 3048 ↦ cmpt 5174 –1-1-onto→wf1o 6485 ‘cfv 6486 Fincfn 8875 ♯chash 14239 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: derang0 35234 derangsn 35235 derangenlem 35236 subfaclefac 35241 subfacp1lem3 35247 subfacp1lem5 35249 subfacp1lem6 35250 |
| Copyright terms: Public domain | W3C validator |