Step | Hyp | Ref
| Expression |
1 | | subfacp1lem.a |
. . . . . . . 8
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
2 | | fzfi 13073 |
. . . . . . . . 9
⊢
(1...(𝑁 + 1)) ∈
Fin |
3 | | deranglem 31690 |
. . . . . . . . 9
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . 8
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
5 | 1, 4 | eqeltri 2902 |
. . . . . . 7
⊢ 𝐴 ∈ Fin |
6 | | subfacp1lem5.b |
. . . . . . . 8
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} |
7 | | ssrab2 3914 |
. . . . . . . 8
⊢ {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} ⊆ 𝐴 |
8 | 6, 7 | eqsstri 3860 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝐴 |
9 | | ssfi 8455 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
10 | 5, 8, 9 | mp2an 683 |
. . . . . 6
⊢ 𝐵 ∈ Fin |
11 | 10 | elexi 3430 |
. . . . 5
⊢ 𝐵 ∈ V |
12 | 11 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐵 ∈ V) |
13 | | subfacp1lem5.c |
. . . . . . 7
⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
14 | | fzfi 13073 |
. . . . . . . 8
⊢
(2...(𝑁 + 1)) ∈
Fin |
15 | | deranglem 31690 |
. . . . . . . 8
⊢
((2...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
16 | 14, 15 | ax-mp 5 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
17 | 13, 16 | eqeltri 2902 |
. . . . . 6
⊢ 𝐶 ∈ Fin |
18 | 17 | elexi 3430 |
. . . . 5
⊢ 𝐶 ∈ V |
19 | 18 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐶 ∈ V) |
20 | | derang.d |
. . . . . . . . . . . . 13
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
21 | | subfac.n |
. . . . . . . . . . . . 13
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
22 | | subfacp1lem1.n |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑁 ∈ ℕ) |
23 | | subfacp1lem1.m |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
24 | | subfacp1lem1.x |
. . . . . . . . . . . . 13
⊢ 𝑀 ∈ V |
25 | | subfacp1lem1.k |
. . . . . . . . . . . . 13
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
26 | | subfacp1lem5.f |
. . . . . . . . . . . . 13
⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
27 | | f1oi 6419 |
. . . . . . . . . . . . . 14
⊢ ( I
↾ 𝐾):𝐾–1-1-onto→𝐾 |
28 | 27 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ( I ↾ 𝐾):𝐾–1-1-onto→𝐾) |
29 | 20, 21, 1, 22, 23, 24, 25, 26, 28 | subfacp1lem2a 31704 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
30 | 29 | simp1d 1176 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
31 | 30 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
32 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
33 | | fveq1 6436 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) |
34 | 33 | eqeq1d 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
35 | | fveq1 6436 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) |
36 | 35 | neeq1d 3058 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) ≠ 1 ↔ (𝑏‘𝑀) ≠ 1)) |
37 | 34, 36 | anbi12d 624 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
38 | 37, 6 | elrab2 3589 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
39 | 32, 38 | sylib 210 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
40 | 39 | simpld 490 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
41 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑏 ∈ V |
42 | | f1oeq1 6371 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
43 | | fveq1 6436 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
44 | 43 | neeq1d 3058 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
45 | 44 | ralbidv 3195 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
46 | 42, 45 | anbi12d 624 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) |
47 | 41, 46, 1 | elab2 3575 |
. . . . . . . . . . . 12
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
48 | 40, 47 | sylib 210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
49 | 48 | simpld 490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
50 | | f1oco 6404 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
51 | 31, 49, 50 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
52 | | f1of1 6381 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
53 | | df-f1 6132 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡(𝐹 ∘ 𝑏))) |
54 | 53 | simprbi 492 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡(𝐹 ∘ 𝑏)) |
55 | 51, 52, 54 | 3syl 18 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡(𝐹 ∘ 𝑏)) |
56 | | f1ofn 6383 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
57 | | fnresdm 6237 |
. . . . . . . . . . 11
⊢ ((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏)) |
58 | | f1oeq1 6371 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
59 | 51, 56, 57, 58 | 4syl 19 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
60 | 51, 59 | mpbird 249 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
61 | | f1ofo 6389 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
62 | 60, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
63 | | 1ex 10359 |
. . . . . . . . . . 11
⊢ 1 ∈
V |
64 | 63, 63 | f1osn 6421 |
. . . . . . . . . 10
⊢ {〈1,
1〉}:{1}–1-1-onto→{1} |
65 | 51, 56 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
66 | 22 | peano2nnd 11376 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
67 | | nnuz 12012 |
. . . . . . . . . . . . . . . 16
⊢ ℕ =
(ℤ≥‘1) |
68 | 66, 67 | syl6eleq 2916 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘1)) |
69 | | eluzfz1 12648 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 + 1))) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 1 ∈ (1...(𝑁 + 1))) |
71 | 70 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 1 ∈ (1...(𝑁 + 1))) |
72 | | fnressn 6681 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
73 | 65, 71, 72 | syl2anc 579 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
74 | | f1of 6382 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
75 | 49, 74 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
76 | | fvco3 6526 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
77 | 75, 71, 76 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
78 | 39 | simprd 491 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1)) |
79 | 78 | simpld 490 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) |
80 | 79 | fveq2d 6441 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑏‘1)) = (𝐹‘𝑀)) |
81 | 29 | simp3d 1178 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘𝑀) = 1) |
82 | 81 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑀) = 1) |
83 | 77, 80, 82 | 3eqtrd 2865 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = 1) |
84 | 83 | opeq2d 4632 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 〈1, ((𝐹 ∘ 𝑏)‘1)〉 = 〈1,
1〉) |
85 | 84 | sneqd 4411 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {〈1, ((𝐹 ∘ 𝑏)‘1)〉} = {〈1,
1〉}) |
86 | 73, 85 | eqtrd 2861 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1,
1〉}) |
87 | | f1oeq1 6371 |
. . . . . . . . . . 11
⊢ (((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, 1〉} →
(((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1} ↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
88 | 86, 87 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
89 | 64, 88 | mpbiri 250 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}) |
90 | | f1ofo 6389 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
→ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
91 | 89, 90 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
92 | | resdif 6402 |
. . . . . . . 8
⊢ ((Fun
◡(𝐹 ∘ 𝑏) ∧ ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
93 | 55, 62, 91, 92 | syl3anc 1494 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
94 | | fzsplit 12667 |
. . . . . . . . . . . 12
⊢ (1 ∈
(1...(𝑁 + 1)) →
(1...(𝑁 + 1)) = ((1...1)
∪ ((1 + 1)...(𝑁 +
1)))) |
95 | 70, 94 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1)))) |
96 | | 1z 11742 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℤ |
97 | | fzsn 12683 |
. . . . . . . . . . . . 13
⊢ (1 ∈
ℤ → (1...1) = {1}) |
98 | 96, 97 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (1...1) =
{1} |
99 | | 1p1e2 11490 |
. . . . . . . . . . . . 13
⊢ (1 + 1) =
2 |
100 | 99 | oveq1i 6920 |
. . . . . . . . . . . 12
⊢ ((1 +
1)...(𝑁 + 1)) = (2...(𝑁 + 1)) |
101 | 98, 100 | uneq12i 3994 |
. . . . . . . . . . 11
⊢ ((1...1)
∪ ((1 + 1)...(𝑁 + 1)))
= ({1} ∪ (2...(𝑁 +
1))) |
102 | 95, 101 | syl6req 2878 |
. . . . . . . . . 10
⊢ (𝜑 → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
103 | 70 | snssd 4560 |
. . . . . . . . . . 11
⊢ (𝜑 → {1} ⊆ (1...(𝑁 + 1))) |
104 | | incom 4034 |
. . . . . . . . . . . 12
⊢ ({1}
∩ (2...(𝑁 + 1))) =
((2...(𝑁 + 1)) ∩
{1}) |
105 | | 1lt2 11536 |
. . . . . . . . . . . . . . 15
⊢ 1 <
2 |
106 | | 1re 10363 |
. . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ |
107 | | 2re 11432 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℝ |
108 | 106, 107 | ltnlei 10484 |
. . . . . . . . . . . . . . 15
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
109 | 105, 108 | mpbi 222 |
. . . . . . . . . . . . . 14
⊢ ¬ 2
≤ 1 |
110 | | elfzle1 12644 |
. . . . . . . . . . . . . 14
⊢ (1 ∈
(2...(𝑁 + 1)) → 2 ≤
1) |
111 | 109, 110 | mto 189 |
. . . . . . . . . . . . 13
⊢ ¬ 1
∈ (2...(𝑁 +
1)) |
112 | | disjsn 4467 |
. . . . . . . . . . . . 13
⊢
(((2...(𝑁 + 1))
∩ {1}) = ∅ ↔ ¬ 1 ∈ (2...(𝑁 + 1))) |
113 | 111, 112 | mpbir 223 |
. . . . . . . . . . . 12
⊢
((2...(𝑁 + 1)) ∩
{1}) = ∅ |
114 | 104, 113 | eqtri 2849 |
. . . . . . . . . . 11
⊢ ({1}
∩ (2...(𝑁 + 1))) =
∅ |
115 | | uneqdifeq 4282 |
. . . . . . . . . . 11
⊢ (({1}
⊆ (1...(𝑁 + 1)) ∧
({1} ∩ (2...(𝑁 + 1))) =
∅) → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1)))) |
116 | 103, 114,
115 | sylancl 580 |
. . . . . . . . . 10
⊢ (𝜑 → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) =
(2...(𝑁 +
1)))) |
117 | 102, 116 | mpbid 224 |
. . . . . . . . 9
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
118 | 117 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
119 | | reseq2 5628 |
. . . . . . . . . 10
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → ((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
120 | | f1oeq1 6371 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
121 | 119, 120 | syl 17 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
122 | | f1oeq2 6372 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
123 | | f1oeq3 6373 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
124 | 121, 122,
123 | 3bitrd 297 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
125 | 118, 124 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
126 | 93, 125 | mpbid 224 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
127 | 75 | adantr 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
128 | | fzp1ss 12692 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → ((1 + 1)...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) |
129 | 96, 128 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ((1 +
1)...(𝑁 + 1)) ⊆
(1...(𝑁 +
1)) |
130 | 100, 129 | eqsstr3i 3861 |
. . . . . . . . . 10
⊢
(2...(𝑁 + 1))
⊆ (1...(𝑁 +
1)) |
131 | | simpr 479 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (2...(𝑁 + 1))) |
132 | 130, 131 | sseldi 3825 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
133 | | fvco3 6526 |
. . . . . . . . 9
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
134 | 127, 132,
133 | syl2anc 579 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
135 | 20, 21, 1, 22, 23, 24, 25, 6, 26 | subfacp1lem4 31707 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝐹 = 𝐹) |
136 | 135 | fveq1d 6439 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
137 | 136 | ad2antrr 717 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
138 | 78 | simprd 491 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ 1) |
139 | 138, 82 | neeqtrrd 3073 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
140 | 139 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
141 | | fveq2 6437 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) |
142 | | fveq2 6437 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → (𝐹‘𝑦) = (𝐹‘𝑀)) |
143 | 141, 142 | neeq12d 3060 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑏‘𝑀) ≠ (𝐹‘𝑀))) |
144 | 140, 143 | syl5ibrcom 239 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
145 | 130 | sseli 3823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → 𝑦 ∈ (1...(𝑁 + 1))) |
146 | 48 | simprd 491 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) |
147 | 146 | r19.21bi 3141 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
148 | 145, 147 | sylan2 586 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
149 | 148 | adantrr 708 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ 𝑦) |
150 | 25 | eleq2i 2898 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀})) |
151 | | eldifsn 4538 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
152 | 150, 151 | bitri 267 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
153 | 20, 21, 1, 22, 23, 24, 25, 26, 28 | subfacp1lem2b 31705 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (( I ↾ 𝐾)‘𝑦)) |
154 | | fvresi 6696 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
155 | 154 | adantl 475 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
156 | 153, 155 | eqtrd 2861 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = 𝑦) |
157 | 152, 156 | sylan2br 588 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
158 | 157 | adantlr 706 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
159 | 149, 158 | neeqtrrd 3073 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
160 | 159 | expr 450 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
161 | 144, 160 | pm2.61dne 3085 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
162 | 161 | necomd 3054 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
163 | 137, 162 | eqnetrd 3066 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
164 | 31 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
165 | | ffvelrn 6611 |
. . . . . . . . . . . 12
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
166 | 75, 145, 165 | syl2an 589 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
167 | | f1ocnvfv 6794 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
168 | 164, 166,
167 | syl2anc 579 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
169 | 168 | necon3d 3020 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (𝑏‘𝑦) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦)) |
170 | 163, 169 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦) |
171 | 134, 170 | eqnetrd 3066 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
172 | 171 | ralrimiva 3175 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
173 | | f1of 6382 |
. . . . . . . . . . . . 13
⊢ (( I
↾ 𝐾):𝐾–1-1-onto→𝐾 → ( I ↾ 𝐾):𝐾⟶𝐾) |
174 | 27, 173 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ( I
↾ 𝐾):𝐾⟶𝐾 |
175 | | difexg 5035 |
. . . . . . . . . . . . . 14
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
V) |
176 | 14, 175 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
V |
177 | 25, 176 | eqeltri 2902 |
. . . . . . . . . . . 12
⊢ 𝐾 ∈ V |
178 | | fex 6750 |
. . . . . . . . . . . 12
⊢ ((( I
↾ 𝐾):𝐾⟶𝐾 ∧ 𝐾 ∈ V) → ( I ↾ 𝐾) ∈ V) |
179 | 174, 177,
178 | mp2an 683 |
. . . . . . . . . . 11
⊢ ( I
↾ 𝐾) ∈
V |
180 | | prex 5132 |
. . . . . . . . . . 11
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V |
181 | 179, 180 | unex 7221 |
. . . . . . . . . 10
⊢ (( I
↾ 𝐾) ∪ {〈1,
𝑀〉, 〈𝑀, 1〉}) ∈
V |
182 | 26, 181 | eqeltri 2902 |
. . . . . . . . 9
⊢ 𝐹 ∈ V |
183 | 182, 41 | coex 7385 |
. . . . . . . 8
⊢ (𝐹 ∘ 𝑏) ∈ V |
184 | 183 | resex 5684 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ V |
185 | | f1oeq1 6371 |
. . . . . . . 8
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
186 | | fveq1 6436 |
. . . . . . . . . . 11
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
187 | | fvres 6456 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
188 | 186, 187 | sylan9eq 2881 |
. . . . . . . . . 10
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑓‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
189 | 188 | neeq1d 3058 |
. . . . . . . . 9
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
190 | 189 | ralbidva 3194 |
. . . . . . . 8
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
191 | 185, 190 | anbi12d 624 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦))) |
192 | 184, 191,
13 | elab2 3575 |
. . . . . 6
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶 ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
193 | 126, 172,
192 | sylanbrc 578 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶) |
194 | 193 | ex 403 |
. . . 4
⊢ (𝜑 → (𝑏 ∈ 𝐵 → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶)) |
195 | 30 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
196 | | simpr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) |
197 | | vex 3417 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ V |
198 | | f1oeq1 6371 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
199 | | fveq1 6436 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) |
200 | 199 | neeq1d 3058 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) |
201 | 200 | ralbidv 3195 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
202 | 198, 201 | anbi12d 624 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦))) |
203 | 197, 202,
13 | elab2 3575 |
. . . . . . . . . . . 12
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
204 | 196, 203 | sylib 210 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
205 | 204 | simpld 490 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
206 | | f1oun 6401 |
. . . . . . . . . . 11
⊢
((({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) ∧ (({1} ∩ (2...(𝑁 + 1))) = ∅ ∧ ({1}
∩ (2...(𝑁 + 1))) =
∅)) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
207 | 114, 114,
206 | mpanr12 696 |
. . . . . . . . . 10
⊢
(({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) → ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
208 | 64, 205, 207 | sylancr 581 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
209 | | f1oeq2 6372 |
. . . . . . . . . . . 12
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 +
1))))) |
210 | | f1oeq3 6373 |
. . . . . . . . . . . 12
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
211 | 209, 210 | bitrd 271 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
212 | 102, 211 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
213 | 212 | biimpa 470 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))))
→ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
214 | 208, 213 | syldan 585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
215 | | f1oco 6404 |
. . . . . . . 8
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
216 | 195, 214,
215 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
217 | | f1of 6382 |
. . . . . . . . . . 11
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
218 | 214, 217 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
219 | | fvco3 6526 |
. . . . . . . . . 10
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
220 | 218, 219 | sylan 575 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
221 | 136 | ad2antrr 717 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
222 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
223 | 102 | ad2antrr 717 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
224 | 222, 223 | eleqtrrd 2909 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))) |
225 | | elun 3982 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ({1} ∪ (2...(𝑁 + 1))) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
226 | 224, 225 | sylib 210 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
227 | | nelne2 3096 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → 𝑀 ≠ 1) |
228 | 23, 111, 227 | sylancl 580 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑀 ≠ 1) |
229 | 228 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) |
230 | 29 | simp2d 1177 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐹‘1) = 𝑀) |
231 | 230 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) = 𝑀) |
232 | | f1ofun 6384 |
. . . . . . . . . . . . . . . . . . 19
⊢
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) →
Fun ({〈1, 1〉} ∪ 𝑐)) |
233 | 208, 232 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → Fun ({〈1, 1〉} ∪ 𝑐)) |
234 | | ssun1 4005 |
. . . . . . . . . . . . . . . . . . 19
⊢ {〈1,
1〉} ⊆ ({〈1, 1〉} ∪ 𝑐) |
235 | 63 | snid 4431 |
. . . . . . . . . . . . . . . . . . . 20
⊢ 1 ∈
{1} |
236 | 63 | dmsnop 5854 |
. . . . . . . . . . . . . . . . . . . 20
⊢ dom
{〈1, 1〉} = {1} |
237 | 235, 236 | eleqtrri 2905 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
dom {〈1, 1〉} |
238 | | funssfv 6458 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ {〈1, 1〉} ⊆ ({〈1,
1〉} ∪ 𝑐) ∧ 1
∈ dom {〈1, 1〉}) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
239 | 234, 237,
238 | mp3an23 1581 |
. . . . . . . . . . . . . . . . . 18
⊢ (Fun
({〈1, 1〉} ∪ 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
240 | 233, 239 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
241 | 63, 63 | fvsn 6704 |
. . . . . . . . . . . . . . . . 17
⊢
({〈1, 1〉}‘1) = 1 |
242 | 240, 241 | syl6eq 2877 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
243 | 229, 231,
242 | 3netr4d 3076 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1)) |
244 | | elsni 4416 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
245 | 244 | fveq2d 6441 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → (𝐹‘𝑦) = (𝐹‘1)) |
246 | 244 | fveq2d 6441 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → (({〈1,
1〉} ∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
247 | 245, 246 | neeq12d 3060 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → ((𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1))) |
248 | 243, 247 | syl5ibrcom 239 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ {1} → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
249 | 248 | imp 397 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ {1}) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
250 | 233 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → Fun ({〈1, 1〉} ∪
𝑐)) |
251 | | ssun2 4006 |
. . . . . . . . . . . . . . . . 17
⊢ 𝑐 ⊆ ({〈1, 1〉}
∪ 𝑐) |
252 | 251 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
253 | | f1odm 6386 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → dom 𝑐 = (2...(𝑁 + 1))) |
254 | 205, 253 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → dom 𝑐 = (2...(𝑁 + 1))) |
255 | 254 | eleq2d 2892 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ (2...(𝑁 + 1)))) |
256 | 255 | biimpar 471 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ dom 𝑐) |
257 | | funssfv 6458 |
. . . . . . . . . . . . . . . 16
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑦 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑦) = (𝑐‘𝑦)) |
258 | 250, 252,
256, 257 | syl3anc 1494 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
259 | | f1of 6382 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
260 | 205, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
261 | 23 | adantr 474 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) |
262 | 260, 261 | ffvelrnd 6614 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (2...(𝑁 + 1))) |
263 | | nelne2 3096 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑐‘𝑀) ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
264 | 262, 111,
263 | sylancl 580 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 1) |
265 | 264 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
266 | 81 | ad2antrr 717 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑀) = 1) |
267 | 265, 266 | neeqtrrd 3073 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ (𝐹‘𝑀)) |
268 | | fveq2 6437 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑀 → (𝑐‘𝑦) = (𝑐‘𝑀)) |
269 | 268, 142 | neeq12d 3060 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑐‘𝑀) ≠ (𝐹‘𝑀))) |
270 | 267, 269 | syl5ibrcom 239 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
271 | 204 | simprd 491 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦) |
272 | 271 | r19.21bi 3141 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ 𝑦) |
273 | 272 | adantrr 708 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ 𝑦) |
274 | 157 | adantlr 706 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
275 | 273, 274 | neeqtrrd 3073 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
276 | 275 | expr 450 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
277 | 270, 276 | pm2.61dne 3085 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
278 | 258, 277 | eqnetrd 3066 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ≠ (𝐹‘𝑦)) |
279 | 278 | necomd 3054 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
280 | 249, 279 | jaodan 985 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
281 | 226, 280 | syldan 585 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
282 | 221, 281 | eqnetrd 3066 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
283 | 195 | adantr 474 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
284 | 218 | ffvelrnda 6613 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) |
285 | | f1ocnvfv 6794 |
. . . . . . . . . . . 12
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
286 | 283, 284,
285 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
287 | 286 | necon3d 3020 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦)) |
288 | 282, 287 | mpd 15 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦) |
289 | 220, 288 | eqnetrd 3066 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
290 | 289 | ralrimiva 3175 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
291 | | snex 5131 |
. . . . . . . . . 10
⊢ {〈1,
1〉} ∈ V |
292 | 291, 197 | unex 7221 |
. . . . . . . . 9
⊢
({〈1, 1〉} ∪ 𝑐) ∈ V |
293 | 182, 292 | coex 7385 |
. . . . . . . 8
⊢ (𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈
V |
294 | | f1oeq1 6371 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
295 | | fveq1 6436 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓‘𝑦) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦)) |
296 | 295 | neeq1d 3058 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
297 | 296 | ralbidv 3195 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
298 | 294, 297 | anbi12d 624 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦))) |
299 | 293, 298,
1 | elab2 3575 |
. . . . . . 7
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐴 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
300 | 216, 290,
299 | sylanbrc 578 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴) |
301 | 70 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ∈ (1...(𝑁 + 1))) |
302 | | fvco3 6526 |
. . . . . . . . 9
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉}
∪ 𝑐)‘1))) |
303 | 218, 301,
302 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1))) |
304 | 242 | fveq2d 6441 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1)) = (𝐹‘1)) |
305 | 303, 304,
231 | 3eqtrd 2865 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀) |
306 | 130, 23 | sseldi 3825 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 + 1))) |
307 | 306 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (1...(𝑁 + 1))) |
308 | | fvco3 6526 |
. . . . . . . . . 10
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑀 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
309 | 218, 307,
308 | syl2anc 579 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
310 | 251 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
311 | 261, 254 | eleqtrrd 2909 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ dom 𝑐) |
312 | | funssfv 6458 |
. . . . . . . . . . 11
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑀 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
313 | 233, 310,
311, 312 | syl3anc 1494 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
314 | 313 | fveq2d 6441 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀)) = (𝐹‘(𝑐‘𝑀))) |
315 | 309, 314 | eqtrd 2861 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(𝑐‘𝑀))) |
316 | 135 | fveq1d 6439 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹‘1) = (𝐹‘1)) |
317 | 316, 230 | eqtrd 2861 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘1) = 𝑀) |
318 | 317 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) = 𝑀) |
319 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) |
320 | 268, 319 | neeq12d 3060 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑀) ≠ 𝑀)) |
321 | 320 | rspcv 3522 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ (2...(𝑁 + 1)) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦 → (𝑐‘𝑀) ≠ 𝑀)) |
322 | 261, 271,
321 | sylc 65 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 𝑀) |
323 | 322 | necomd 3054 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ (𝑐‘𝑀)) |
324 | 318, 323 | eqnetrd 3066 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) ≠ (𝑐‘𝑀)) |
325 | 130, 262 | sseldi 3825 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) |
326 | | f1ocnvfv 6794 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
327 | 195, 325,
326 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
328 | 327 | necon3d 3020 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((◡𝐹‘1) ≠ (𝑐‘𝑀) → (𝐹‘(𝑐‘𝑀)) ≠ 1)) |
329 | 324, 328 | mpd 15 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(𝑐‘𝑀)) ≠ 1) |
330 | 315, 329 | eqnetrd 3066 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1) |
331 | 305, 330 | jca 507 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
332 | | fveq1 6436 |
. . . . . . . . 9
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘1) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1)) |
333 | 332 | eqeq1d 2827 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘1) = 𝑀 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀)) |
334 | | fveq1 6436 |
. . . . . . . . 9
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘𝑀) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀)) |
335 | 334 | neeq1d 3058 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘𝑀) ≠ 1 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
336 | 333, 335 | anbi12d 624 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
337 | 336, 6 | elrab2 3589 |
. . . . . 6
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐵 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴 ∧ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
338 | 300, 331,
337 | sylanbrc 578 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵) |
339 | 338 | ex 403 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ 𝐶 → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵)) |
340 | 30 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
341 | | f1of1 6381 |
. . . . . . . 8
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
342 | 340, 341 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
343 | | f1of 6382 |
. . . . . . . . 9
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
344 | 340, 343 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
345 | 75 | adantrr 708 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
346 | | fco 6299 |
. . . . . . . 8
⊢ ((𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
347 | 344, 345,
346 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
348 | 218 | adantrl 707 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
349 | | cocan1 6806 |
. . . . . . 7
⊢ ((𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ∧ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
350 | 342, 347,
348, 349 | syl3anc 1494 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
351 | | coass 5899 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝐹) ∘ 𝑏) = (𝐹 ∘ (𝐹 ∘ 𝑏)) |
352 | 135 | coeq1d 5520 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = (𝐹 ∘ 𝐹)) |
353 | | f1ococnv1 6410 |
. . . . . . . . . . . . 13
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
354 | 30, 353 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
355 | 352, 354 | eqtr3d 2863 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
356 | 355 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
357 | 356 | coeq1d 5520 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏)) |
358 | | fcoi2 6320 |
. . . . . . . . . 10
⊢ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
359 | 345, 358 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
360 | 357, 359 | eqtrd 2861 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = 𝑏) |
361 | 351, 360 | syl5eqr 2875 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ (𝐹 ∘ 𝑏)) = 𝑏) |
362 | 361 | eqeq1d 2827 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)))) |
363 | 83 | adantrr 708 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = 1) |
364 | 242 | adantrl 707 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
365 | 363, 364 | eqtr4d 2864 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
366 | | fveq2 6437 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 1 → ((𝐹 ∘ 𝑏)‘𝑦) = ((𝐹 ∘ 𝑏)‘1)) |
367 | | fveq2 6437 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 1 → (({〈1, 1〉}
∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪
𝑐)‘1)) |
368 | 366, 367 | eqeq12d 2840 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1))) |
369 | 63, 368 | ralsn 4444 |
. . . . . . . . . . . 12
⊢
(∀𝑦 ∈
{1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
370 | 365, 369 | sylibr 226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
371 | 370 | biantrurd 528 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)))) |
372 | | ralunb 4023 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
({1} ∪ (2...(𝑁 +
1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
373 | 371, 372 | syl6bbr 281 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
374 | 187 | adantl 475 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
375 | 374 | eqcomd 2831 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
376 | 258 | adantlrl 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
377 | 375, 376 | eqeq12d 2840 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
378 | 377 | ralbidva 3194 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
379 | 102 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
380 | 379 | raleqdv 3356 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
381 | 373, 378,
380 | 3bitr3rd 302 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
382 | 65 | adantrr 708 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
383 | 214 | adantrl 707 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
384 | | f1ofn 6383 |
. . . . . . . . . 10
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐) Fn (1...(𝑁 + 1))) |
385 | 383, 384 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) |
386 | | eqfnfv 6565 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
387 | 382, 385,
386 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
388 | | fnssres 6241 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ (2...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
389 | 382, 130,
388 | sylancl 580 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
390 | 205 | adantrl 707 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
391 | | f1ofn 6383 |
. . . . . . . . . 10
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐 Fn (2...(𝑁 + 1))) |
392 | 390, 391 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn (2...(𝑁 + 1))) |
393 | | eqfnfv 6565 |
. . . . . . . . 9
⊢ ((((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1)) ∧ 𝑐 Fn (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
394 | 389, 392,
393 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
395 | 381, 387,
394 | 3bitr4d 303 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐)) |
396 | | eqcom 2832 |
. . . . . . 7
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
397 | 395, 396 | syl6bb 279 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
398 | 350, 362,
397 | 3bitr3d 301 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
399 | 398 | ex 403 |
. . . 4
⊢ (𝜑 → ((𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))))) |
400 | 12, 19, 194, 339, 399 | en3d 8265 |
. . 3
⊢ (𝜑 → 𝐵 ≈ 𝐶) |
401 | | hashen 13434 |
. . . 4
⊢ ((𝐵 ∈ Fin ∧ 𝐶 ∈ Fin) →
((♯‘𝐵) =
(♯‘𝐶) ↔
𝐵 ≈ 𝐶)) |
402 | 10, 17, 401 | mp2an 683 |
. . 3
⊢
((♯‘𝐵) =
(♯‘𝐶) ↔
𝐵 ≈ 𝐶) |
403 | 400, 402 | sylibr 226 |
. 2
⊢ (𝜑 → (♯‘𝐵) = (♯‘𝐶)) |
404 | 20, 21 | derangen2 31698 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (𝑆‘(♯‘(2...(𝑁 + 1))))) |
405 | 20 | derangval 31691 |
. . . . . 6
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘{𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)})) |
406 | 13 | fveq2i 6440 |
. . . . . 6
⊢
(♯‘𝐶) =
(♯‘{𝑓 ∣
(𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)}) |
407 | 405, 406 | syl6eqr 2879 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘𝐶)) |
408 | 404, 407 | eqtr3d 2863 |
. . . 4
⊢
((2...(𝑁 + 1))
∈ Fin → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶)) |
409 | 14, 408 | ax-mp 5 |
. . 3
⊢ (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶) |
410 | 22, 67 | syl6eleq 2916 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
411 | | eluzp1p1 12001 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
412 | 410, 411 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
413 | | df-2 11421 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
414 | 413 | fveq2i 6440 |
. . . . . . 7
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
415 | 412, 414 | syl6eleqr 2917 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘2)) |
416 | | hashfz 13510 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘2) → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
417 | 415, 416 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
418 | 66 | nncnd 11375 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
419 | | 2cnd 11436 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
420 | | 1cnd 10358 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
421 | 418, 419,
420 | subsubd 10748 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = (((𝑁 + 1) − 2) +
1)) |
422 | | 2m1e1 11491 |
. . . . . . 7
⊢ (2
− 1) = 1 |
423 | 422 | oveq2i 6921 |
. . . . . 6
⊢ ((𝑁 + 1) − (2 − 1)) =
((𝑁 + 1) −
1) |
424 | 22 | nncnd 11375 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
425 | | ax-1cn 10317 |
. . . . . . 7
⊢ 1 ∈
ℂ |
426 | | pncan 10614 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
427 | 424, 425,
426 | sylancl 580 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
428 | 423, 427 | syl5eq 2873 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = 𝑁) |
429 | 417, 421,
428 | 3eqtr2d 2867 |
. . . 4
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = 𝑁) |
430 | 429 | fveq2d 6441 |
. . 3
⊢ (𝜑 → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (𝑆‘𝑁)) |
431 | 409, 430 | syl5eqr 2875 |
. 2
⊢ (𝜑 → (♯‘𝐶) = (𝑆‘𝑁)) |
432 | 403, 431 | eqtrd 2861 |
1
⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) |