| Step | Hyp | Ref
| Expression |
| 1 | | subfacp1lem.a |
. . . . . . 7
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| 2 | | fzfi 13995 |
. . . . . . . 8
⊢
(1...(𝑁 + 1)) ∈
Fin |
| 3 | | deranglem 35193 |
. . . . . . . 8
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
| 4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
| 5 | 1, 4 | eqeltri 2831 |
. . . . . 6
⊢ 𝐴 ∈ Fin |
| 6 | | subfacp1lem5.b |
. . . . . . 7
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} |
| 7 | 6 | ssrab3 4062 |
. . . . . 6
⊢ 𝐵 ⊆ 𝐴 |
| 8 | | ssfi 9192 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
| 9 | 5, 7, 8 | mp2an 692 |
. . . . 5
⊢ 𝐵 ∈ Fin |
| 10 | 9 | elexi 3487 |
. . . 4
⊢ 𝐵 ∈ V |
| 11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
| 12 | | eqid 2736 |
. . . 4
⊢ (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) = (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
| 13 | | derang.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
| 14 | | subfac.n |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
| 15 | | subfacp1lem1.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 16 | | subfacp1lem1.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
| 17 | | subfacp1lem1.x |
. . . . . . . . . . 11
⊢ 𝑀 ∈ V |
| 18 | | subfacp1lem1.k |
. . . . . . . . . . 11
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
| 19 | | subfacp1lem5.f |
. . . . . . . . . . 11
⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
| 20 | | f1oi 6861 |
. . . . . . . . . . . 12
⊢ ( I
↾ 𝐾):𝐾–1-1-onto→𝐾 |
| 21 | 20 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ( I ↾ 𝐾):𝐾–1-1-onto→𝐾) |
| 22 | 13, 14, 1, 15, 16, 17, 18, 19, 21 | subfacp1lem2a 35207 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
| 23 | 22 | simp1d 1142 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
| 25 | | fveq1 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) |
| 26 | 25 | eqeq1d 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
| 27 | | fveq1 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) |
| 28 | 27 | neeq1d 2992 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) ≠ 1 ↔ (𝑏‘𝑀) ≠ 1)) |
| 29 | 26, 28 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 30 | 29, 6 | elrab2 3679 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 31 | 24, 30 | sylib 218 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
| 32 | 31 | simpld 494 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
| 33 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑏 ∈ V |
| 34 | | f1oeq1 6811 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 35 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
| 36 | 35 | neeq1d 2992 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
| 37 | 36 | ralbidv 3164 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 38 | 34, 37 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) |
| 39 | 33, 38, 1 | elab2 3666 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 40 | 32, 39 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
| 41 | 40 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 42 | | f1oco 6846 |
. . . . . . . . 9
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 43 | 23, 41, 42 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 44 | | f1of1 6822 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 45 | | df-f1 6541 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡(𝐹 ∘ 𝑏))) |
| 46 | 45 | simprbi 496 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡(𝐹 ∘ 𝑏)) |
| 47 | 43, 44, 46 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡(𝐹 ∘ 𝑏)) |
| 48 | | f1ofn 6824 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 49 | | fnresdm 6662 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏)) |
| 50 | | f1oeq1 6811 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 51 | 43, 48, 49, 50 | 4syl 19 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 52 | 43, 51 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 53 | | f1ofo 6830 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
| 54 | 52, 53 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
| 55 | | 1ex 11236 |
. . . . . . . . . 10
⊢ 1 ∈
V |
| 56 | 55, 55 | f1osn 6863 |
. . . . . . . . 9
⊢ {〈1,
1〉}:{1}–1-1-onto→{1} |
| 57 | 43, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 58 | 15 | peano2nnd 12262 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
| 59 | | nnuz 12900 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
| 60 | 58, 59 | eleqtrdi 2845 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘1)) |
| 61 | | eluzfz1 13553 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 + 1))) |
| 62 | 60, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈ (1...(𝑁 + 1))) |
| 63 | 62 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 1 ∈ (1...(𝑁 + 1))) |
| 64 | | fnressn 7153 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
| 65 | 57, 63, 64 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
| 66 | | f1of 6823 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 67 | 41, 66 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 68 | 67, 63 | fvco3d 6984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
| 69 | 31 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1)) |
| 70 | 69 | simpld 494 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) |
| 71 | 70 | fveq2d 6885 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑏‘1)) = (𝐹‘𝑀)) |
| 72 | 22 | simp3d 1144 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑀) = 1) |
| 73 | 72 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑀) = 1) |
| 74 | 68, 71, 73 | 3eqtrd 2775 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = 1) |
| 75 | 74 | opeq2d 4861 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 〈1, ((𝐹 ∘ 𝑏)‘1)〉 = 〈1,
1〉) |
| 76 | 75 | sneqd 4618 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {〈1, ((𝐹 ∘ 𝑏)‘1)〉} = {〈1,
1〉}) |
| 77 | 65, 76 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1,
1〉}) |
| 78 | 77 | f1oeq1d 6818 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
| 79 | 56, 78 | mpbiri 258 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}) |
| 80 | | f1ofo 6830 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
→ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
| 81 | 79, 80 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
| 82 | | resdif 6844 |
. . . . . . 7
⊢ ((Fun
◡(𝐹 ∘ 𝑏) ∧ ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
| 83 | 47, 54, 81, 82 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
| 84 | | fzsplit 13572 |
. . . . . . . . . . 11
⊢ (1 ∈
(1...(𝑁 + 1)) →
(1...(𝑁 + 1)) = ((1...1)
∪ ((1 + 1)...(𝑁 +
1)))) |
| 85 | 62, 84 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1)))) |
| 86 | | 1z 12627 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
| 87 | | fzsn 13588 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → (1...1) = {1}) |
| 88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (1...1) =
{1} |
| 89 | | 1p1e2 12370 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
2 |
| 90 | 89 | oveq1i 7420 |
. . . . . . . . . . 11
⊢ ((1 +
1)...(𝑁 + 1)) = (2...(𝑁 + 1)) |
| 91 | 88, 90 | uneq12i 4146 |
. . . . . . . . . 10
⊢ ((1...1)
∪ ((1 + 1)...(𝑁 + 1)))
= ({1} ∪ (2...(𝑁 +
1))) |
| 92 | 85, 91 | eqtr2di 2788 |
. . . . . . . . 9
⊢ (𝜑 → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 93 | 62 | snssd 4790 |
. . . . . . . . . 10
⊢ (𝜑 → {1} ⊆ (1...(𝑁 + 1))) |
| 94 | | incom 4189 |
. . . . . . . . . . 11
⊢ ({1}
∩ (2...(𝑁 + 1))) =
((2...(𝑁 + 1)) ∩
{1}) |
| 95 | | 1lt2 12416 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
| 96 | | 1re 11240 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
| 97 | | 2re 12319 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
| 98 | 96, 97 | ltnlei 11361 |
. . . . . . . . . . . . . 14
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
| 99 | 95, 98 | mpbi 230 |
. . . . . . . . . . . . 13
⊢ ¬ 2
≤ 1 |
| 100 | | elfzle1 13549 |
. . . . . . . . . . . . 13
⊢ (1 ∈
(2...(𝑁 + 1)) → 2 ≤
1) |
| 101 | 99, 100 | mto 197 |
. . . . . . . . . . . 12
⊢ ¬ 1
∈ (2...(𝑁 +
1)) |
| 102 | | disjsn 4692 |
. . . . . . . . . . . 12
⊢
(((2...(𝑁 + 1))
∩ {1}) = ∅ ↔ ¬ 1 ∈ (2...(𝑁 + 1))) |
| 103 | 101, 102 | mpbir 231 |
. . . . . . . . . . 11
⊢
((2...(𝑁 + 1)) ∩
{1}) = ∅ |
| 104 | 94, 103 | eqtri 2759 |
. . . . . . . . . 10
⊢ ({1}
∩ (2...(𝑁 + 1))) =
∅ |
| 105 | | uneqdifeq 4473 |
. . . . . . . . . 10
⊢ (({1}
⊆ (1...(𝑁 + 1)) ∧
({1} ∩ (2...(𝑁 + 1))) =
∅) → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1)))) |
| 106 | 93, 104, 105 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) =
(2...(𝑁 +
1)))) |
| 107 | 92, 106 | mpbid 232 |
. . . . . . . 8
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
| 108 | 107 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
| 109 | | reseq2 5966 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → ((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
| 110 | 109 | f1oeq1d 6818 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
| 111 | | f1oeq2 6812 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
| 112 | | f1oeq3 6813 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 113 | 110, 111,
112 | 3bitrd 305 |
. . . . . . 7
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 114 | 108, 113 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 115 | 83, 114 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 116 | 67 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 117 | | fzp1ss 13597 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → ((1 + 1)...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) |
| 118 | 86, 117 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((1 +
1)...(𝑁 + 1)) ⊆
(1...(𝑁 +
1)) |
| 119 | 90, 118 | eqsstrri 4011 |
. . . . . . . . 9
⊢
(2...(𝑁 + 1))
⊆ (1...(𝑁 +
1)) |
| 120 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (2...(𝑁 + 1))) |
| 121 | 119, 120 | sselid 3961 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 122 | 116, 121 | fvco3d 6984 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
| 123 | 13, 14, 1, 15, 16, 17, 18, 6, 19 | subfacp1lem4 35210 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐹 = 𝐹) |
| 124 | 123 | fveq1d 6883 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 125 | 124 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 126 | 69 | simprd 495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ 1) |
| 127 | 126, 73 | neeqtrrd 3007 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
| 128 | 127 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
| 129 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) |
| 130 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → (𝐹‘𝑦) = (𝐹‘𝑀)) |
| 131 | 129, 130 | neeq12d 2994 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑏‘𝑀) ≠ (𝐹‘𝑀))) |
| 132 | 128, 131 | syl5ibrcom 247 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
| 133 | 119 | sseli 3959 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 134 | 40 | simprd 495 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) |
| 135 | 134 | r19.21bi 3238 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
| 136 | 133, 135 | sylan2 593 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
| 137 | 136 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ 𝑦) |
| 138 | 18 | eleq2i 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀})) |
| 139 | | eldifsn 4767 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
| 140 | 138, 139 | bitri 275 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
| 141 | 13, 14, 1, 15, 16, 17, 18, 19, 21 | subfacp1lem2b 35208 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (( I ↾ 𝐾)‘𝑦)) |
| 142 | | fvresi 7170 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
| 143 | 142 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
| 144 | 141, 143 | eqtrd 2771 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = 𝑦) |
| 145 | 140, 144 | sylan2br 595 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 146 | 145 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 147 | 137, 146 | neeqtrrd 3007 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
| 148 | 147 | expr 456 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
| 149 | 132, 148 | pm2.61dne 3019 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
| 150 | 149 | necomd 2988 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
| 151 | 125, 150 | eqnetrd 3000 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
| 152 | 23 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 153 | | ffvelcdm 7076 |
. . . . . . . . . . 11
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
| 154 | 67, 133, 153 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
| 155 | | f1ocnvfv 7276 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
| 156 | 152, 154,
155 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
| 157 | 156 | necon3d 2954 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (𝑏‘𝑦) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦)) |
| 158 | 151, 157 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦) |
| 159 | 122, 158 | eqnetrd 3000 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
| 160 | 159 | ralrimiva 3133 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
| 161 | | f1of 6823 |
. . . . . . . . . . . 12
⊢ (( I
↾ 𝐾):𝐾–1-1-onto→𝐾 → ( I ↾ 𝐾):𝐾⟶𝐾) |
| 162 | 20, 161 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( I
↾ 𝐾):𝐾⟶𝐾 |
| 163 | | fzfi 13995 |
. . . . . . . . . . . . 13
⊢
(2...(𝑁 + 1)) ∈
Fin |
| 164 | | difexg 5304 |
. . . . . . . . . . . . 13
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
V) |
| 165 | 163, 164 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
V |
| 166 | 18, 165 | eqeltri 2831 |
. . . . . . . . . . 11
⊢ 𝐾 ∈ V |
| 167 | | fex 7223 |
. . . . . . . . . . 11
⊢ ((( I
↾ 𝐾):𝐾⟶𝐾 ∧ 𝐾 ∈ V) → ( I ↾ 𝐾) ∈ V) |
| 168 | 162, 166,
167 | mp2an 692 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐾) ∈
V |
| 169 | | prex 5412 |
. . . . . . . . . 10
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V |
| 170 | 168, 169 | unex 7743 |
. . . . . . . . 9
⊢ (( I
↾ 𝐾) ∪ {〈1,
𝑀〉, 〈𝑀, 1〉}) ∈
V |
| 171 | 19, 170 | eqeltri 2831 |
. . . . . . . 8
⊢ 𝐹 ∈ V |
| 172 | 171, 33 | coex 7931 |
. . . . . . 7
⊢ (𝐹 ∘ 𝑏) ∈ V |
| 173 | 172 | resex 6021 |
. . . . . 6
⊢ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ V |
| 174 | | f1oeq1 6811 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 175 | | fveq1 6880 |
. . . . . . . . . 10
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
| 176 | | fvres 6900 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 177 | 175, 176 | sylan9eq 2791 |
. . . . . . . . 9
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑓‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 178 | 177 | neeq1d 2992 |
. . . . . . . 8
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 179 | 178 | ralbidva 3162 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 180 | 174, 179 | anbi12d 632 |
. . . . . 6
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦))) |
| 181 | | subfacp1lem5.c |
. . . . . 6
⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
| 182 | 173, 180,
181 | elab2 3666 |
. . . . 5
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶 ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
| 183 | 115, 160,
182 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶) |
| 184 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) |
| 185 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
| 186 | | f1oeq1 6811 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
| 187 | | fveq1 6880 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) |
| 188 | 187 | neeq1d 2992 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) |
| 189 | 188 | ralbidv 3164 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 190 | 186, 189 | anbi12d 632 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦))) |
| 191 | 185, 190,
181 | elab2 3666 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 192 | 184, 191 | sylib 218 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
| 193 | 192 | simpld 494 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 194 | | f1oun 6842 |
. . . . . . . . . 10
⊢
((({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) ∧ (({1} ∩ (2...(𝑁 + 1))) = ∅ ∧ ({1}
∩ (2...(𝑁 + 1))) =
∅)) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 195 | 104, 104,
194 | mpanr12 705 |
. . . . . . . . 9
⊢
(({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) → ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 196 | 56, 193, 195 | sylancr 587 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
| 197 | | f1oeq2 6812 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 +
1))))) |
| 198 | | f1oeq3 6813 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 199 | 197, 198 | bitrd 279 |
. . . . . . . . . 10
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 200 | 92, 199 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 201 | 200 | biimpa 476 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))))
→ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 202 | 196, 201 | syldan 591 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 203 | | f1oco 6846 |
. . . . . . 7
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 204 | 23, 202, 203 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 205 | | f1of 6823 |
. . . . . . . . . 10
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 206 | 202, 205 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 207 | | fvco3 6983 |
. . . . . . . . 9
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 208 | 206, 207 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 209 | 124 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
| 210 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
| 211 | 92 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 212 | 210, 211 | eleqtrrd 2838 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))) |
| 213 | | elun 4133 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ({1} ∪ (2...(𝑁 + 1))) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 214 | 212, 213 | sylib 218 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 215 | | nelne2 3031 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → 𝑀 ≠ 1) |
| 216 | 16, 101, 215 | sylancl 586 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ≠ 1) |
| 217 | 216 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) |
| 218 | 22 | simp2d 1143 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘1) = 𝑀) |
| 219 | 218 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) = 𝑀) |
| 220 | | f1ofun 6825 |
. . . . . . . . . . . . . . . . . 18
⊢
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) →
Fun ({〈1, 1〉} ∪ 𝑐)) |
| 221 | 196, 220 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → Fun ({〈1, 1〉} ∪ 𝑐)) |
| 222 | | ssun1 4158 |
. . . . . . . . . . . . . . . . . 18
⊢ {〈1,
1〉} ⊆ ({〈1, 1〉} ∪ 𝑐) |
| 223 | 55 | snid 4643 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
{1} |
| 224 | 55 | dmsnop 6210 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
{〈1, 1〉} = {1} |
| 225 | 223, 224 | eleqtrri 2834 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
dom {〈1, 1〉} |
| 226 | | funssfv 6902 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ {〈1, 1〉} ⊆ ({〈1,
1〉} ∪ 𝑐) ∧ 1
∈ dom {〈1, 1〉}) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 227 | 222, 225,
226 | mp3an23 1455 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
({〈1, 1〉} ∪ 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 228 | 221, 227 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
| 229 | 55, 55 | fvsn 7178 |
. . . . . . . . . . . . . . . 16
⊢
({〈1, 1〉}‘1) = 1 |
| 230 | 228, 229 | eqtrdi 2787 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
| 231 | 217, 219,
230 | 3netr4d 3010 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1)) |
| 232 | | elsni 4623 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
| 233 | 232 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → (𝐹‘𝑦) = (𝐹‘1)) |
| 234 | 232 | fveq2d 6885 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → (({〈1,
1〉} ∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 235 | 233, 234 | neeq12d 2994 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {1} → ((𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1))) |
| 236 | 231, 235 | syl5ibrcom 247 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ {1} → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 237 | 236 | imp 406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ {1}) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 238 | 221 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → Fun ({〈1, 1〉} ∪
𝑐)) |
| 239 | | ssun2 4159 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ⊆ ({〈1, 1〉}
∪ 𝑐) |
| 240 | 239 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
| 241 | | f1odm 6827 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → dom 𝑐 = (2...(𝑁 + 1))) |
| 242 | 193, 241 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → dom 𝑐 = (2...(𝑁 + 1))) |
| 243 | 242 | eleq2d 2821 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ (2...(𝑁 + 1)))) |
| 244 | 243 | biimpar 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ dom 𝑐) |
| 245 | | funssfv 6902 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑦 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 246 | 238, 240,
244, 245 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 247 | | f1of 6823 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
| 248 | 193, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
| 249 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) |
| 250 | 248, 249 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (2...(𝑁 + 1))) |
| 251 | | nelne2 3031 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐‘𝑀) ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
| 252 | 250, 101,
251 | sylancl 586 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 1) |
| 253 | 252 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
| 254 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑀) = 1) |
| 255 | 253, 254 | neeqtrrd 3007 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ (𝐹‘𝑀)) |
| 256 | | fveq2 6881 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑀 → (𝑐‘𝑦) = (𝑐‘𝑀)) |
| 257 | 256, 130 | neeq12d 2994 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑐‘𝑀) ≠ (𝐹‘𝑀))) |
| 258 | 255, 257 | syl5ibrcom 247 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
| 259 | 192 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦) |
| 260 | 259 | r19.21bi 3238 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ 𝑦) |
| 261 | 260 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ 𝑦) |
| 262 | 145 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
| 263 | 261, 262 | neeqtrrd 3007 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
| 264 | 263 | expr 456 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
| 265 | 258, 264 | pm2.61dne 3019 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
| 266 | 246, 265 | eqnetrd 3000 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ≠ (𝐹‘𝑦)) |
| 267 | 266 | necomd 2988 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 268 | 237, 267 | jaodan 959 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 269 | 214, 268 | syldan 591 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 270 | 209, 269 | eqnetrd 3000 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 271 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 272 | 206 | ffvelcdmda 7079 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) |
| 273 | | f1ocnvfv 7276 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 274 | 271, 272,
273 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 275 | 274 | necon3d 2954 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦)) |
| 276 | 270, 275 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦) |
| 277 | 208, 276 | eqnetrd 3000 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
| 278 | 277 | ralrimiva 3133 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
| 279 | | snex 5411 |
. . . . . . . . 9
⊢ {〈1,
1〉} ∈ V |
| 280 | 279, 185 | unex 7743 |
. . . . . . . 8
⊢
({〈1, 1〉} ∪ 𝑐) ∈ V |
| 281 | 171, 280 | coex 7931 |
. . . . . . 7
⊢ (𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈
V |
| 282 | | f1oeq1 6811 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
| 283 | | fveq1 6880 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓‘𝑦) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦)) |
| 284 | 283 | neeq1d 2992 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 285 | 284 | ralbidv 3164 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 286 | 282, 285 | anbi12d 632 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦))) |
| 287 | 281, 286,
1 | elab2 3666 |
. . . . . 6
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐴 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
| 288 | 204, 278,
287 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴) |
| 289 | 62 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ∈ (1...(𝑁 + 1))) |
| 290 | 206, 289 | fvco3d 6984 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1))) |
| 291 | 230 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1)) = (𝐹‘1)) |
| 292 | 290, 291,
219 | 3eqtrd 2775 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀) |
| 293 | 119, 16 | sselid 3961 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 + 1))) |
| 294 | 293 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (1...(𝑁 + 1))) |
| 295 | 206, 294 | fvco3d 6984 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
| 296 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
| 297 | 249, 242 | eleqtrrd 2838 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ dom 𝑐) |
| 298 | | funssfv 6902 |
. . . . . . . . . 10
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑀 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
| 299 | 221, 296,
297, 298 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
| 300 | 299 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀)) = (𝐹‘(𝑐‘𝑀))) |
| 301 | 295, 300 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(𝑐‘𝑀))) |
| 302 | 123 | fveq1d 6883 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘1) = (𝐹‘1)) |
| 303 | 302, 218 | eqtrd 2771 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹‘1) = 𝑀) |
| 304 | 303 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) = 𝑀) |
| 305 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) |
| 306 | 256, 305 | neeq12d 2994 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑀) ≠ 𝑀)) |
| 307 | 306, 259,
249 | rspcdva 3607 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 𝑀) |
| 308 | 307 | necomd 2988 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ (𝑐‘𝑀)) |
| 309 | 304, 308 | eqnetrd 3000 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) ≠ (𝑐‘𝑀)) |
| 310 | 119, 250 | sselid 3961 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) |
| 311 | | f1ocnvfv 7276 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
| 312 | 23, 310, 311 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
| 313 | 312 | necon3d 2954 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((◡𝐹‘1) ≠ (𝑐‘𝑀) → (𝐹‘(𝑐‘𝑀)) ≠ 1)) |
| 314 | 309, 313 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(𝑐‘𝑀)) ≠ 1) |
| 315 | 301, 314 | eqnetrd 3000 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1) |
| 316 | 292, 315 | jca 511 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
| 317 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘1) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1)) |
| 318 | 317 | eqeq1d 2738 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘1) = 𝑀 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀)) |
| 319 | | fveq1 6880 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘𝑀) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀)) |
| 320 | 319 | neeq1d 2992 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘𝑀) ≠ 1 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
| 321 | 318, 320 | anbi12d 632 |
. . . . . 6
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
| 322 | 321, 6 | elrab2 3679 |
. . . . 5
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐵 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴 ∧ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
| 323 | 288, 316,
322 | sylanbrc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵) |
| 324 | 23 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 325 | | f1of1 6822 |
. . . . . . 7
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 326 | 324, 325 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
| 327 | | f1of 6823 |
. . . . . . . 8
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 328 | 324, 327 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 329 | 67 | adantrr 717 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 330 | 328, 329 | fcod 6736 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 331 | 206 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
| 332 | | cocan1 7289 |
. . . . . 6
⊢ ((𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ∧ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
| 333 | 326, 330,
331, 332 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
| 334 | | coass 6259 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝐹) ∘ 𝑏) = (𝐹 ∘ (𝐹 ∘ 𝑏)) |
| 335 | 123 | coeq1d 5846 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = (𝐹 ∘ 𝐹)) |
| 336 | | f1ococnv1 6852 |
. . . . . . . . . . . 12
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 337 | 23, 336 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 338 | 335, 337 | eqtr3d 2773 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 339 | 338 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
| 340 | 339 | coeq1d 5846 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏)) |
| 341 | | fcoi2 6758 |
. . . . . . . . 9
⊢ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
| 342 | 329, 341 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
| 343 | 340, 342 | eqtrd 2771 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = 𝑏) |
| 344 | 334, 343 | eqtr3id 2785 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ (𝐹 ∘ 𝑏)) = 𝑏) |
| 345 | 344 | eqeq1d 2738 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)))) |
| 346 | 74 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = 1) |
| 347 | 230 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
| 348 | 346, 347 | eqtr4d 2774 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 349 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → ((𝐹 ∘ 𝑏)‘𝑦) = ((𝐹 ∘ 𝑏)‘1)) |
| 350 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → (({〈1, 1〉}
∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪
𝑐)‘1)) |
| 351 | 349, 350 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1 → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1))) |
| 352 | 55, 351 | ralsn 4662 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
| 353 | 348, 352 | sylibr 234 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
| 354 | 353 | biantrurd 532 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)))) |
| 355 | | ralunb 4177 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
({1} ∪ (2...(𝑁 +
1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 356 | 354, 355 | bitr4di 289 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 357 | 176 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
| 358 | 357 | eqcomd 2742 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
| 359 | 246 | adantlrl 720 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
| 360 | 358, 359 | eqeq12d 2752 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 361 | 360 | ralbidva 3162 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 362 | 92 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
| 363 | 362 | raleqdv 3309 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 364 | 356, 361,
363 | 3bitr3rd 310 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 365 | 57 | adantrr 717 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
| 366 | 202 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
| 367 | | f1ofn 6824 |
. . . . . . . . 9
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐) Fn (1...(𝑁 + 1))) |
| 368 | 366, 367 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) |
| 369 | | eqfnfv 7026 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 370 | 365, 368,
369 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
| 371 | | fnssres 6666 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ (2...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
| 372 | 365, 119,
371 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
| 373 | 193 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
| 374 | | f1ofn 6824 |
. . . . . . . . 9
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐 Fn (2...(𝑁 + 1))) |
| 375 | 373, 374 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn (2...(𝑁 + 1))) |
| 376 | | eqfnfv 7026 |
. . . . . . . 8
⊢ ((((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1)) ∧ 𝑐 Fn (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 377 | 372, 375,
376 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
| 378 | 364, 370,
377 | 3bitr4d 311 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐)) |
| 379 | | eqcom 2743 |
. . . . . 6
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
| 380 | 378, 379 | bitrdi 287 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
| 381 | 333, 345,
380 | 3bitr3d 309 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
| 382 | 12, 183, 323, 381 | f1o2d 7666 |
. . 3
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))):𝐵–1-1-onto→𝐶) |
| 383 | 11, 382 | hasheqf1od 14376 |
. 2
⊢ (𝜑 → (♯‘𝐵) = (♯‘𝐶)) |
| 384 | 13, 14 | derangen2 35201 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (𝑆‘(♯‘(2...(𝑁 + 1))))) |
| 385 | 13 | derangval 35194 |
. . . . . 6
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘{𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)})) |
| 386 | 181 | fveq2i 6884 |
. . . . . 6
⊢
(♯‘𝐶) =
(♯‘{𝑓 ∣
(𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)}) |
| 387 | 385, 386 | eqtr4di 2789 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘𝐶)) |
| 388 | 384, 387 | eqtr3d 2773 |
. . . 4
⊢
((2...(𝑁 + 1))
∈ Fin → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶)) |
| 389 | 163, 388 | ax-mp 5 |
. . 3
⊢ (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶) |
| 390 | 15, 59 | eleqtrdi 2845 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
| 391 | | eluzp1p1 12885 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 392 | 390, 391 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
| 393 | | df-2 12308 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
| 394 | 393 | fveq2i 6884 |
. . . . . . 7
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
| 395 | 392, 394 | eleqtrrdi 2846 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘2)) |
| 396 | | hashfz 14450 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘2) → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
| 397 | 395, 396 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
| 398 | 58 | nncnd 12261 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
| 399 | | 2cnd 12323 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
| 400 | | 1cnd 11235 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
| 401 | 398, 399,
400 | subsubd 11627 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = (((𝑁 + 1) − 2) +
1)) |
| 402 | | 2m1e1 12371 |
. . . . . . 7
⊢ (2
− 1) = 1 |
| 403 | 402 | oveq2i 7421 |
. . . . . 6
⊢ ((𝑁 + 1) − (2 − 1)) =
((𝑁 + 1) −
1) |
| 404 | 15 | nncnd 12261 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 405 | | ax-1cn 11192 |
. . . . . . 7
⊢ 1 ∈
ℂ |
| 406 | | pncan 11493 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
| 407 | 404, 405,
406 | sylancl 586 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
| 408 | 403, 407 | eqtrid 2783 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = 𝑁) |
| 409 | 397, 401,
408 | 3eqtr2d 2777 |
. . . 4
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = 𝑁) |
| 410 | 409 | fveq2d 6885 |
. . 3
⊢ (𝜑 → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (𝑆‘𝑁)) |
| 411 | 389, 410 | eqtr3id 2785 |
. 2
⊢ (𝜑 → (♯‘𝐶) = (𝑆‘𝑁)) |
| 412 | 383, 411 | eqtrd 2771 |
1
⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) |