Step | Hyp | Ref
| Expression |
1 | | subfacp1lem.a |
. . . . . . 7
⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
2 | | fzfi 13545 |
. . . . . . . 8
⊢
(1...(𝑁 + 1)) ∈
Fin |
3 | | deranglem 32841 |
. . . . . . . 8
⊢
((1...(𝑁 + 1))
∈ Fin → {𝑓
∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin) |
4 | 2, 3 | ax-mp 5 |
. . . . . . 7
⊢ {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ∈ Fin |
5 | 1, 4 | eqeltri 2834 |
. . . . . 6
⊢ 𝐴 ∈ Fin |
6 | | subfacp1lem5.b |
. . . . . . 7
⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} |
7 | 6 | ssrab3 3995 |
. . . . . 6
⊢ 𝐵 ⊆ 𝐴 |
8 | | ssfi 8851 |
. . . . . 6
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) |
9 | 5, 7, 8 | mp2an 692 |
. . . . 5
⊢ 𝐵 ∈ Fin |
10 | 9 | elexi 3427 |
. . . 4
⊢ 𝐵 ∈ V |
11 | 10 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐵 ∈ V) |
12 | | eqid 2737 |
. . . 4
⊢ (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) = (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
13 | | derang.d |
. . . . . . . . . . 11
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) |
14 | | subfac.n |
. . . . . . . . . . 11
⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) |
15 | | subfacp1lem1.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
16 | | subfacp1lem1.m |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) |
17 | | subfacp1lem1.x |
. . . . . . . . . . 11
⊢ 𝑀 ∈ V |
18 | | subfacp1lem1.k |
. . . . . . . . . . 11
⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) |
19 | | subfacp1lem5.f |
. . . . . . . . . . 11
⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) |
20 | | f1oi 6698 |
. . . . . . . . . . . 12
⊢ ( I
↾ 𝐾):𝐾–1-1-onto→𝐾 |
21 | 20 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → ( I ↾ 𝐾):𝐾–1-1-onto→𝐾) |
22 | 13, 14, 1, 15, 16, 17, 18, 19, 21 | subfacp1lem2a 32855 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) |
23 | 22 | simp1d 1144 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
24 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐵) |
25 | | fveq1 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → (𝑔‘1) = (𝑏‘1)) |
26 | 25 | eqeq1d 2739 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → ((𝑔‘1) = 𝑀 ↔ (𝑏‘1) = 𝑀)) |
27 | | fveq1 6716 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔 = 𝑏 → (𝑔‘𝑀) = (𝑏‘𝑀)) |
28 | 27 | neeq1d 3000 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 = 𝑏 → ((𝑔‘𝑀) ≠ 1 ↔ (𝑏‘𝑀) ≠ 1)) |
29 | 26, 28 | anbi12d 634 |
. . . . . . . . . . . . . 14
⊢ (𝑔 = 𝑏 → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
30 | 29, 6 | elrab2 3605 |
. . . . . . . . . . . . 13
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
31 | 24, 30 | sylib 221 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏 ∈ 𝐴 ∧ ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1))) |
32 | 31 | simpld 498 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏 ∈ 𝐴) |
33 | | vex 3412 |
. . . . . . . . . . . 12
⊢ 𝑏 ∈ V |
34 | | f1oeq1 6649 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
35 | | fveq1 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑏 → (𝑓‘𝑦) = (𝑏‘𝑦)) |
36 | 35 | neeq1d 3000 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑏 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑏‘𝑦) ≠ 𝑦)) |
37 | 36 | ralbidv 3118 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑏 → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
38 | 34, 37 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑏 → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦))) |
39 | 33, 38, 1 | elab2 3591 |
. . . . . . . . . . 11
⊢ (𝑏 ∈ 𝐴 ↔ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
40 | 32, 39 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦)) |
41 | 40 | simpld 498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
42 | | f1oco 6683 |
. . . . . . . . 9
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ 𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
43 | 23, 41, 42 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
44 | | f1of1 6660 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
45 | | df-f1 6385 |
. . . . . . . . 9
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ Fun ◡(𝐹 ∘ 𝑏))) |
46 | 45 | simprbi 500 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) → Fun ◡(𝐹 ∘ 𝑏)) |
47 | 43, 44, 46 | 3syl 18 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → Fun ◡(𝐹 ∘ 𝑏)) |
48 | | f1ofn 6662 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
49 | | fnresdm 6496 |
. . . . . . . . . 10
⊢ ((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏)) |
50 | | f1oeq1 6649 |
. . . . . . . . . 10
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))) = (𝐹 ∘ 𝑏) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
51 | 43, 48, 49, 50 | 4syl 19 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
52 | 43, 51 | mpbird 260 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
53 | | f1ofo 6668 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
54 | 52, 53 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1))) |
55 | | 1ex 10829 |
. . . . . . . . . 10
⊢ 1 ∈
V |
56 | 55, 55 | f1osn 6700 |
. . . . . . . . 9
⊢ {〈1,
1〉}:{1}–1-1-onto→{1} |
57 | 43, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
58 | 15 | peano2nnd 11847 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑁 + 1) ∈ ℕ) |
59 | | nnuz 12477 |
. . . . . . . . . . . . . . 15
⊢ ℕ =
(ℤ≥‘1) |
60 | 58, 59 | eleqtrdi 2848 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘1)) |
61 | | eluzfz1 13119 |
. . . . . . . . . . . . . 14
⊢ ((𝑁 + 1) ∈
(ℤ≥‘1) → 1 ∈ (1...(𝑁 + 1))) |
62 | 60, 61 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 1 ∈ (1...(𝑁 + 1))) |
63 | 62 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 1 ∈ (1...(𝑁 + 1))) |
64 | | fnressn 6973 |
. . . . . . . . . . . 12
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ 1 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
65 | 57, 63, 64 | syl2anc 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1, ((𝐹 ∘ 𝑏)‘1)〉}) |
66 | | f1of 6661 |
. . . . . . . . . . . . . . . 16
⊢ (𝑏:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
67 | 41, 66 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
68 | 67, 63 | fvco3d 6811 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = (𝐹‘(𝑏‘1))) |
69 | 31 | simprd 499 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝑏‘1) = 𝑀 ∧ (𝑏‘𝑀) ≠ 1)) |
70 | 69 | simpld 498 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘1) = 𝑀) |
71 | 70 | fveq2d 6721 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘(𝑏‘1)) = (𝐹‘𝑀)) |
72 | 22 | simp3d 1146 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝐹‘𝑀) = 1) |
73 | 72 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝐹‘𝑀) = 1) |
74 | 68, 71, 73 | 3eqtrd 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏)‘1) = 1) |
75 | 74 | opeq2d 4791 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 〈1, ((𝐹 ∘ 𝑏)‘1)〉 = 〈1,
1〉) |
76 | 75 | sneqd 4553 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → {〈1, ((𝐹 ∘ 𝑏)‘1)〉} = {〈1,
1〉}) |
77 | 65, 76 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}) = {〈1,
1〉}) |
78 | 77 | f1oeq1d 6656 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
↔ {〈1, 1〉}:{1}–1-1-onto→{1})) |
79 | 56, 78 | mpbiri 261 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}) |
80 | | f1ofo 6668 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) ↾ {1}):{1}–1-1-onto→{1}
→ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
81 | 79, 80 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) |
82 | | resdif 6681 |
. . . . . . 7
⊢ ((Fun
◡(𝐹 ∘ 𝑏) ∧ ((𝐹 ∘ 𝑏) ↾ (1...(𝑁 + 1))):(1...(𝑁 + 1))–onto→(1...(𝑁 + 1)) ∧ ((𝐹 ∘ 𝑏) ↾ {1}):{1}–onto→{1}) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
83 | 47, 54, 81, 82 | syl3anc 1373 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1})) |
84 | | fzsplit 13138 |
. . . . . . . . . . 11
⊢ (1 ∈
(1...(𝑁 + 1)) →
(1...(𝑁 + 1)) = ((1...1)
∪ ((1 + 1)...(𝑁 +
1)))) |
85 | 62, 84 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (1...(𝑁 + 1)) = ((1...1) ∪ ((1 + 1)...(𝑁 + 1)))) |
86 | | 1z 12207 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℤ |
87 | | fzsn 13154 |
. . . . . . . . . . . 12
⊢ (1 ∈
ℤ → (1...1) = {1}) |
88 | 86, 87 | ax-mp 5 |
. . . . . . . . . . 11
⊢ (1...1) =
{1} |
89 | | 1p1e2 11955 |
. . . . . . . . . . . 12
⊢ (1 + 1) =
2 |
90 | 89 | oveq1i 7223 |
. . . . . . . . . . 11
⊢ ((1 +
1)...(𝑁 + 1)) = (2...(𝑁 + 1)) |
91 | 88, 90 | uneq12i 4075 |
. . . . . . . . . 10
⊢ ((1...1)
∪ ((1 + 1)...(𝑁 + 1)))
= ({1} ∪ (2...(𝑁 +
1))) |
92 | 85, 91 | eqtr2di 2795 |
. . . . . . . . 9
⊢ (𝜑 → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
93 | 62 | snssd 4722 |
. . . . . . . . . 10
⊢ (𝜑 → {1} ⊆ (1...(𝑁 + 1))) |
94 | | incom 4115 |
. . . . . . . . . . 11
⊢ ({1}
∩ (2...(𝑁 + 1))) =
((2...(𝑁 + 1)) ∩
{1}) |
95 | | 1lt2 12001 |
. . . . . . . . . . . . . 14
⊢ 1 <
2 |
96 | | 1re 10833 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℝ |
97 | | 2re 11904 |
. . . . . . . . . . . . . . 15
⊢ 2 ∈
ℝ |
98 | 96, 97 | ltnlei 10953 |
. . . . . . . . . . . . . 14
⊢ (1 < 2
↔ ¬ 2 ≤ 1) |
99 | 95, 98 | mpbi 233 |
. . . . . . . . . . . . 13
⊢ ¬ 2
≤ 1 |
100 | | elfzle1 13115 |
. . . . . . . . . . . . 13
⊢ (1 ∈
(2...(𝑁 + 1)) → 2 ≤
1) |
101 | 99, 100 | mto 200 |
. . . . . . . . . . . 12
⊢ ¬ 1
∈ (2...(𝑁 +
1)) |
102 | | disjsn 4627 |
. . . . . . . . . . . 12
⊢
(((2...(𝑁 + 1))
∩ {1}) = ∅ ↔ ¬ 1 ∈ (2...(𝑁 + 1))) |
103 | 101, 102 | mpbir 234 |
. . . . . . . . . . 11
⊢
((2...(𝑁 + 1)) ∩
{1}) = ∅ |
104 | 94, 103 | eqtri 2765 |
. . . . . . . . . 10
⊢ ({1}
∩ (2...(𝑁 + 1))) =
∅ |
105 | | uneqdifeq 4404 |
. . . . . . . . . 10
⊢ (({1}
⊆ (1...(𝑁 + 1)) ∧
({1} ∩ (2...(𝑁 + 1))) =
∅) → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1)))) |
106 | 93, 104, 105 | sylancl 589 |
. . . . . . . . 9
⊢ (𝜑 → (({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1)) ↔ ((1...(𝑁 + 1)) ∖ {1}) =
(2...(𝑁 +
1)))) |
107 | 92, 106 | mpbid 235 |
. . . . . . . 8
⊢ (𝜑 → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
108 | 107 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((1...(𝑁 + 1)) ∖ {1}) = (2...(𝑁 + 1))) |
109 | | reseq2 5846 |
. . . . . . . . 9
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → ((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})) = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
110 | 109 | f1oeq1d 6656 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
111 | | f1oeq2 6650 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}))) |
112 | | f1oeq3 6651 |
. . . . . . . 8
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
113 | 110, 111,
112 | 3bitrd 308 |
. . . . . . 7
⊢
(((1...(𝑁 + 1))
∖ {1}) = (2...(𝑁 +
1)) → (((𝐹 ∘
𝑏) ↾ ((1...(𝑁 + 1)) ∖
{1})):((1...(𝑁 + 1))
∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
114 | 108, 113 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (((𝐹 ∘ 𝑏) ↾ ((1...(𝑁 + 1)) ∖ {1})):((1...(𝑁 + 1)) ∖ {1})–1-1-onto→((1...(𝑁 + 1)) ∖ {1}) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
115 | 83, 114 | mpbid 235 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
116 | 67 | adantr 484 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
117 | | fzp1ss 13163 |
. . . . . . . . . . 11
⊢ (1 ∈
ℤ → ((1 + 1)...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) |
118 | 86, 117 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((1 +
1)...(𝑁 + 1)) ⊆
(1...(𝑁 +
1)) |
119 | 90, 118 | eqsstrri 3936 |
. . . . . . . . 9
⊢
(2...(𝑁 + 1))
⊆ (1...(𝑁 +
1)) |
120 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (2...(𝑁 + 1))) |
121 | 119, 120 | sseldi 3899 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
122 | 116, 121 | fvco3d 6811 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (𝐹‘(𝑏‘𝑦))) |
123 | 13, 14, 1, 15, 16, 17, 18, 6, 19 | subfacp1lem4 32858 |
. . . . . . . . . . 11
⊢ (𝜑 → ◡𝐹 = 𝐹) |
124 | 123 | fveq1d 6719 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
125 | 124 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
126 | 69 | simprd 499 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ 1) |
127 | 126, 73 | neeqtrrd 3015 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
128 | 127 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑀) ≠ (𝐹‘𝑀)) |
129 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → (𝑏‘𝑦) = (𝑏‘𝑀)) |
130 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑀 → (𝐹‘𝑦) = (𝐹‘𝑀)) |
131 | 129, 130 | neeq12d 3002 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → ((𝑏‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑏‘𝑀) ≠ (𝐹‘𝑀))) |
132 | 128, 131 | syl5ibrcom 250 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
133 | 119 | sseli 3896 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → 𝑦 ∈ (1...(𝑁 + 1))) |
134 | 40 | simprd 499 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (1...(𝑁 + 1))(𝑏‘𝑦) ≠ 𝑦) |
135 | 134 | r19.21bi 3130 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
136 | 133, 135 | sylan2 596 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ 𝑦) |
137 | 136 | adantrr 717 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ 𝑦) |
138 | 18 | eleq2i 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀})) |
139 | | eldifsn 4700 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ((2...(𝑁 + 1)) ∖ {𝑀}) ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
140 | 138, 139 | bitri 278 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ 𝐾 ↔ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) |
141 | 13, 14, 1, 15, 16, 17, 18, 19, 21 | subfacp1lem2b 32856 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (( I ↾ 𝐾)‘𝑦)) |
142 | | fvresi 6988 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ 𝐾 → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
143 | 142 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (( I ↾ 𝐾)‘𝑦) = 𝑦) |
144 | 141, 143 | eqtrd 2777 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = 𝑦) |
145 | 140, 144 | sylan2br 598 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
146 | 145 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
147 | 137, 146 | neeqtrrd 3015 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
148 | 147 | expr 460 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑏‘𝑦) ≠ (𝐹‘𝑦))) |
149 | 132, 148 | pm2.61dne 3028 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ≠ (𝐹‘𝑦)) |
150 | 149 | necomd 2996 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
151 | 125, 150 | eqnetrd 3008 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (𝑏‘𝑦)) |
152 | 23 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
153 | | ffvelrn 6902 |
. . . . . . . . . . 11
⊢ ((𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
154 | 67, 133, 153 | syl2an 599 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) |
155 | | f1ocnvfv 7089 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑏‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
156 | 152, 154,
155 | syl2an2r 685 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹‘(𝑏‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (𝑏‘𝑦))) |
157 | 156 | necon3d 2961 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (𝑏‘𝑦) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦)) |
158 | 151, 157 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘(𝑏‘𝑦)) ≠ 𝑦) |
159 | 122, 158 | eqnetrd 3008 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑏 ∈ 𝐵) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
160 | 159 | ralrimiva 3105 |
. . . . 5
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦) |
161 | | f1of 6661 |
. . . . . . . . . . . 12
⊢ (( I
↾ 𝐾):𝐾–1-1-onto→𝐾 → ( I ↾ 𝐾):𝐾⟶𝐾) |
162 | 20, 161 | ax-mp 5 |
. . . . . . . . . . 11
⊢ ( I
↾ 𝐾):𝐾⟶𝐾 |
163 | | fzfi 13545 |
. . . . . . . . . . . . 13
⊢
(2...(𝑁 + 1)) ∈
Fin |
164 | | difexg 5220 |
. . . . . . . . . . . . 13
⊢
((2...(𝑁 + 1))
∈ Fin → ((2...(𝑁
+ 1)) ∖ {𝑀}) ∈
V) |
165 | 163, 164 | ax-mp 5 |
. . . . . . . . . . . 12
⊢
((2...(𝑁 + 1))
∖ {𝑀}) ∈
V |
166 | 18, 165 | eqeltri 2834 |
. . . . . . . . . . 11
⊢ 𝐾 ∈ V |
167 | | fex 7042 |
. . . . . . . . . . 11
⊢ ((( I
↾ 𝐾):𝐾⟶𝐾 ∧ 𝐾 ∈ V) → ( I ↾ 𝐾) ∈ V) |
168 | 162, 166,
167 | mp2an 692 |
. . . . . . . . . 10
⊢ ( I
↾ 𝐾) ∈
V |
169 | | prex 5325 |
. . . . . . . . . 10
⊢ {〈1,
𝑀〉, 〈𝑀, 1〉} ∈
V |
170 | 168, 169 | unex 7531 |
. . . . . . . . 9
⊢ (( I
↾ 𝐾) ∪ {〈1,
𝑀〉, 〈𝑀, 1〉}) ∈
V |
171 | 19, 170 | eqeltri 2834 |
. . . . . . . 8
⊢ 𝐹 ∈ V |
172 | 171, 33 | coex 7708 |
. . . . . . 7
⊢ (𝐹 ∘ 𝑏) ∈ V |
173 | 172 | resex 5899 |
. . . . . 6
⊢ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ V |
174 | | f1oeq1 6649 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
175 | | fveq1 6716 |
. . . . . . . . . 10
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (𝑓‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
176 | | fvres 6736 |
. . . . . . . . . 10
⊢ (𝑦 ∈ (2...(𝑁 + 1)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
177 | 175, 176 | sylan9eq 2798 |
. . . . . . . . 9
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑓‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
178 | 177 | neeq1d 3000 |
. . . . . . . 8
⊢ ((𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
179 | 178 | ralbidva 3117 |
. . . . . . 7
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
180 | 174, 179 | anbi12d 634 |
. . . . . 6
⊢ (𝑓 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦))) |
181 | | subfacp1lem5.c |
. . . . . 6
⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} |
182 | 173, 180,
181 | elab2 3591 |
. . . . 5
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶 ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))):(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) ≠ 𝑦)) |
183 | 115, 160,
182 | sylanbrc 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑏 ∈ 𝐵) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) ∈ 𝐶) |
184 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ∈ 𝐶) |
185 | | vex 3412 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ V |
186 | | f1oeq1 6649 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ↔ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)))) |
187 | | fveq1 6716 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = 𝑐 → (𝑓‘𝑦) = (𝑐‘𝑦)) |
188 | 187 | neeq1d 3000 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑐 → ((𝑓‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑦) ≠ 𝑦)) |
189 | 188 | ralbidv 3118 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑐 → (∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
190 | 186, 189 | anbi12d 634 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑐 → ((𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦))) |
191 | 185, 190,
181 | elab2 3591 |
. . . . . . . . . . 11
⊢ (𝑐 ∈ 𝐶 ↔ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
192 | 184, 191 | sylib 221 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦)) |
193 | 192 | simpld 498 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
194 | | f1oun 6680 |
. . . . . . . . . 10
⊢
((({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) ∧ (({1} ∩ (2...(𝑁 + 1))) = ∅ ∧ ({1}
∩ (2...(𝑁 + 1))) =
∅)) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
195 | 104, 104,
194 | mpanr12 705 |
. . . . . . . . 9
⊢
(({〈1, 1〉}:{1}–1-1-onto→{1}
∧ 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) → ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
196 | 56, 193, 195 | sylancr 590 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 +
1)))) |
197 | | f1oeq2 6650 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 +
1))))) |
198 | | f1oeq3 6651 |
. . . . . . . . . . 11
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
199 | 197, 198 | bitrd 282 |
. . . . . . . . . 10
⊢ (({1}
∪ (2...(𝑁 + 1))) =
(1...(𝑁 + 1)) →
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
200 | 92, 199 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) ↔
({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
201 | 200 | biimpa 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ({〈1, 1〉} ∪
𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))))
→ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
202 | 196, 201 | syldan 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
203 | | f1oco 6683 |
. . . . . . 7
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
204 | 23, 202, 203 | syl2an2r 685 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
205 | | f1of 6661 |
. . . . . . . . . 10
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
206 | 202, 205 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
207 | | fvco3 6810 |
. . . . . . . . 9
⊢
((({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
208 | 206, 207 | sylan 583 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
209 | 124 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) = (𝐹‘𝑦)) |
210 | | simpr 488 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ (1...(𝑁 + 1))) |
211 | 92 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
212 | 210, 211 | eleqtrrd 2841 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → 𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))) |
213 | | elun 4063 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ({1} ∪ (2...(𝑁 + 1))) ↔ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
214 | 212, 213 | sylib 221 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) |
215 | | nelne2 3039 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑀 ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → 𝑀 ≠ 1) |
216 | 16, 101, 215 | sylancl 589 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑀 ≠ 1) |
217 | 216 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ 1) |
218 | 22 | simp2d 1145 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐹‘1) = 𝑀) |
219 | 218 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) = 𝑀) |
220 | | f1ofun 6663 |
. . . . . . . . . . . . . . . . . 18
⊢
(({〈1, 1〉} ∪ 𝑐):({1} ∪ (2...(𝑁 + 1)))–1-1-onto→({1}
∪ (2...(𝑁 + 1))) →
Fun ({〈1, 1〉} ∪ 𝑐)) |
221 | 196, 220 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → Fun ({〈1, 1〉} ∪ 𝑐)) |
222 | | ssun1 4086 |
. . . . . . . . . . . . . . . . . 18
⊢ {〈1,
1〉} ⊆ ({〈1, 1〉} ∪ 𝑐) |
223 | 55 | snid 4577 |
. . . . . . . . . . . . . . . . . . 19
⊢ 1 ∈
{1} |
224 | 55 | dmsnop 6079 |
. . . . . . . . . . . . . . . . . . 19
⊢ dom
{〈1, 1〉} = {1} |
225 | 223, 224 | eleqtrri 2837 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
dom {〈1, 1〉} |
226 | | funssfv 6738 |
. . . . . . . . . . . . . . . . . 18
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ {〈1, 1〉} ⊆ ({〈1,
1〉} ∪ 𝑐) ∧ 1
∈ dom {〈1, 1〉}) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
227 | 222, 225,
226 | mp3an23 1455 |
. . . . . . . . . . . . . . . . 17
⊢ (Fun
({〈1, 1〉} ∪ 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
228 | 221, 227 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = ({〈1,
1〉}‘1)) |
229 | 55, 55 | fvsn 6996 |
. . . . . . . . . . . . . . . 16
⊢
({〈1, 1〉}‘1) = 1 |
230 | 228, 229 | eqtrdi 2794 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
231 | 217, 219,
230 | 3netr4d 3018 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1)) |
232 | | elsni 4558 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ {1} → 𝑦 = 1) |
233 | 232 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → (𝐹‘𝑦) = (𝐹‘1)) |
234 | 232 | fveq2d 6721 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 ∈ {1} → (({〈1,
1〉} ∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
235 | 233, 234 | neeq12d 3002 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ {1} → ((𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (𝐹‘1) ≠ (({〈1, 1〉} ∪
𝑐)‘1))) |
236 | 231, 235 | syl5ibrcom 250 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ {1} → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
237 | 236 | imp 410 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ {1}) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
238 | 221 | adantr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → Fun ({〈1, 1〉} ∪
𝑐)) |
239 | | ssun2 4087 |
. . . . . . . . . . . . . . . 16
⊢ 𝑐 ⊆ ({〈1, 1〉}
∪ 𝑐) |
240 | 239 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
241 | | f1odm 6665 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → dom 𝑐 = (2...(𝑁 + 1))) |
242 | 193, 241 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → dom 𝑐 = (2...(𝑁 + 1))) |
243 | 242 | eleq2d 2823 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑦 ∈ dom 𝑐 ↔ 𝑦 ∈ (2...(𝑁 + 1)))) |
244 | 243 | biimpar 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → 𝑦 ∈ dom 𝑐) |
245 | | funssfv 6738 |
. . . . . . . . . . . . . . 15
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑦 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑦) = (𝑐‘𝑦)) |
246 | 238, 240,
244, 245 | syl3anc 1373 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
247 | | f1of 6661 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
248 | 193, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐:(2...(𝑁 + 1))⟶(2...(𝑁 + 1))) |
249 | 16 | adantr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (2...(𝑁 + 1))) |
250 | 248, 249 | ffvelrnd 6905 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (2...(𝑁 + 1))) |
251 | | nelne2 3039 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑐‘𝑀) ∈ (2...(𝑁 + 1)) ∧ ¬ 1 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
252 | 250, 101,
251 | sylancl 589 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 1) |
253 | 252 | adantr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ 1) |
254 | 72 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑀) = 1) |
255 | 253, 254 | neeqtrrd 3015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑀) ≠ (𝐹‘𝑀)) |
256 | | fveq2 6717 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑀 → (𝑐‘𝑦) = (𝑐‘𝑀)) |
257 | 256, 130 | neeq12d 3002 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ (𝐹‘𝑦) ↔ (𝑐‘𝑀) ≠ (𝐹‘𝑀))) |
258 | 255, 257 | syl5ibrcom 250 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 = 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
259 | 192 | simprd 499 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (2...(𝑁 + 1))(𝑐‘𝑦) ≠ 𝑦) |
260 | 259 | r19.21bi 3130 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ 𝑦) |
261 | 260 | adantrr 717 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ 𝑦) |
262 | 145 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝐹‘𝑦) = 𝑦) |
263 | 261, 262 | neeqtrrd 3015 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ (2...(𝑁 + 1)) ∧ 𝑦 ≠ 𝑀)) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
264 | 263 | expr 460 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑦 ≠ 𝑀 → (𝑐‘𝑦) ≠ (𝐹‘𝑦))) |
265 | 258, 264 | pm2.61dne 3028 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝑐‘𝑦) ≠ (𝐹‘𝑦)) |
266 | 246, 265 | eqnetrd 3008 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ≠ (𝐹‘𝑦)) |
267 | 266 | necomd 2996 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
268 | 237, 267 | jaodan 958 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ (𝑦 ∈ {1} ∨ 𝑦 ∈ (2...(𝑁 + 1)))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
269 | 214, 268 | syldan 594 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
270 | 209, 269 | eqnetrd 3008 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
271 | 23 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
272 | 206 | ffvelrnda 6904 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) |
273 | | f1ocnvfv 7089 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (({〈1, 1〉} ∪
𝑐)‘𝑦) ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
274 | 271, 272,
273 | syl2an2r 685 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) = 𝑦 → (◡𝐹‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
275 | 274 | necon3d 2961 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((◡𝐹‘𝑦) ≠ (({〈1, 1〉} ∪ 𝑐)‘𝑦) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦)) |
276 | 270, 275 | mpd 15 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑦)) ≠ 𝑦) |
277 | 208, 276 | eqnetrd 3008 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑐 ∈ 𝐶) ∧ 𝑦 ∈ (1...(𝑁 + 1))) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
278 | 277 | ralrimiva 3105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦) |
279 | | snex 5324 |
. . . . . . . . 9
⊢ {〈1,
1〉} ∈ V |
280 | 279, 185 | unex 7531 |
. . . . . . . 8
⊢
({〈1, 1〉} ∪ 𝑐) ∈ V |
281 | 171, 280 | coex 7708 |
. . . . . . 7
⊢ (𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈
V |
282 | | f1oeq1 6649 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ↔ (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)))) |
283 | | fveq1 6716 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑓‘𝑦) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦)) |
284 | 283 | neeq1d 3000 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓‘𝑦) ≠ 𝑦 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
285 | 284 | ralbidv 3118 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦 ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
286 | 282, 285 | anbi12d 634 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦) ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦))) |
287 | 281, 286,
1 | elab2 3591 |
. . . . . 6
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐴 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑦) ≠ 𝑦)) |
288 | 204, 278,
287 | sylanbrc 586 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴) |
289 | 62 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 1 ∈ (1...(𝑁 + 1))) |
290 | 206, 289 | fvco3d 6811 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1))) |
291 | 230 | fveq2d 6721 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘1)) = (𝐹‘1)) |
292 | 290, 291,
219 | 3eqtrd 2781 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀) |
293 | 119, 16 | sseldi 3899 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (1...(𝑁 + 1))) |
294 | 293 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ (1...(𝑁 + 1))) |
295 | 206, 294 | fvco3d 6811 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀))) |
296 | 239 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐)) |
297 | 249, 242 | eleqtrrd 2841 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ∈ dom 𝑐) |
298 | | funssfv 6738 |
. . . . . . . . . 10
⊢ ((Fun
({〈1, 1〉} ∪ 𝑐) ∧ 𝑐 ⊆ ({〈1, 1〉} ∪ 𝑐) ∧ 𝑀 ∈ dom 𝑐) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
299 | 221, 296,
297, 298 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (({〈1, 1〉} ∪ 𝑐)‘𝑀) = (𝑐‘𝑀)) |
300 | 299 | fveq2d 6721 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(({〈1, 1〉} ∪ 𝑐)‘𝑀)) = (𝐹‘(𝑐‘𝑀))) |
301 | 295, 300 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) = (𝐹‘(𝑐‘𝑀))) |
302 | 123 | fveq1d 6719 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹‘1) = (𝐹‘1)) |
303 | 302, 218 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝜑 → (◡𝐹‘1) = 𝑀) |
304 | 303 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) = 𝑀) |
305 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑀 → 𝑦 = 𝑀) |
306 | 256, 305 | neeq12d 3002 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑀 → ((𝑐‘𝑦) ≠ 𝑦 ↔ (𝑐‘𝑀) ≠ 𝑀)) |
307 | 306, 259,
249 | rspcdva 3539 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ≠ 𝑀) |
308 | 307 | necomd 2996 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → 𝑀 ≠ (𝑐‘𝑀)) |
309 | 304, 308 | eqnetrd 3008 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (◡𝐹‘1) ≠ (𝑐‘𝑀)) |
310 | 119, 250 | sseldi 3899 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) |
311 | | f1ocnvfv 7089 |
. . . . . . . . . 10
⊢ ((𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝑐‘𝑀) ∈ (1...(𝑁 + 1))) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
312 | 23, 310, 311 | syl2an2r 685 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹‘(𝑐‘𝑀)) = 1 → (◡𝐹‘1) = (𝑐‘𝑀))) |
313 | 312 | necon3d 2961 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((◡𝐹‘1) ≠ (𝑐‘𝑀) → (𝐹‘(𝑐‘𝑀)) ≠ 1)) |
314 | 309, 313 | mpd 15 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹‘(𝑐‘𝑀)) ≠ 1) |
315 | 301, 314 | eqnetrd 3008 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1) |
316 | 292, 315 | jca 515 |
. . . . 5
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
317 | | fveq1 6716 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘1) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1)) |
318 | 317 | eqeq1d 2739 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘1) = 𝑀 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀)) |
319 | | fveq1 6716 |
. . . . . . . 8
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (𝑔‘𝑀) = ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀)) |
320 | 319 | neeq1d 3000 |
. . . . . . 7
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → ((𝑔‘𝑀) ≠ 1 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1)) |
321 | 318, 320 | anbi12d 634 |
. . . . . 6
⊢ (𝑔 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) → (((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1) ↔ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
322 | 321, 6 | elrab2 3605 |
. . . . 5
⊢ ((𝐹 ∘ ({〈1, 1〉}
∪ 𝑐)) ∈ 𝐵 ↔ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐴 ∧ (((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘1) = 𝑀 ∧ ((𝐹 ∘ ({〈1, 1〉} ∪ 𝑐))‘𝑀) ≠ 1))) |
323 | 288, 316,
322 | sylanbrc 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐶) → (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ∈ 𝐵) |
324 | 23 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
325 | | f1of1 6660 |
. . . . . . 7
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
326 | 324, 325 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1))) |
327 | | f1of 6661 |
. . . . . . . 8
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
328 | 324, 327 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝐹:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
329 | 67 | adantrr 717 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
330 | 328, 329 | fcod 6571 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
331 | 206 | adantrl 716 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) |
332 | | cocan1 7101 |
. . . . . 6
⊢ ((𝐹:(1...(𝑁 + 1))–1-1→(1...(𝑁 + 1)) ∧ (𝐹 ∘ 𝑏):(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))⟶(1...(𝑁 + 1))) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
333 | 326, 330,
331, 332 | syl3anc 1373 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ (𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐))) |
334 | | coass 6129 |
. . . . . . 7
⊢ ((𝐹 ∘ 𝐹) ∘ 𝑏) = (𝐹 ∘ (𝐹 ∘ 𝑏)) |
335 | 123 | coeq1d 5730 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = (𝐹 ∘ 𝐹)) |
336 | | f1ococnv1 6689 |
. . . . . . . . . . . 12
⊢ (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
337 | 23, 336 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (◡𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
338 | 335, 337 | eqtr3d 2779 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
339 | 338 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝐹) = ( I ↾ (1...(𝑁 + 1)))) |
340 | 339 | coeq1d 5730 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏)) |
341 | | fcoi2 6594 |
. . . . . . . . 9
⊢ (𝑏:(1...(𝑁 + 1))⟶(1...(𝑁 + 1)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
342 | 329, 341 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (( I ↾ (1...(𝑁 + 1))) ∘ 𝑏) = 𝑏) |
343 | 340, 342 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝐹) ∘ 𝑏) = 𝑏) |
344 | 334, 343 | eqtr3id 2792 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ (𝐹 ∘ 𝑏)) = 𝑏) |
345 | 344 | eqeq1d 2739 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ (𝐹 ∘ 𝑏)) = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)))) |
346 | 74 | adantrr 717 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = 1) |
347 | 230 | adantrl 716 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (({〈1, 1〉} ∪ 𝑐)‘1) = 1) |
348 | 346, 347 | eqtr4d 2780 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
349 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → ((𝐹 ∘ 𝑏)‘𝑦) = ((𝐹 ∘ 𝑏)‘1)) |
350 | | fveq2 6717 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 1 → (({〈1, 1〉}
∪ 𝑐)‘𝑦) = (({〈1, 1〉} ∪
𝑐)‘1)) |
351 | 349, 350 | eqeq12d 2753 |
. . . . . . . . . . . 12
⊢ (𝑦 = 1 → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1))) |
352 | 55, 351 | ralsn 4597 |
. . . . . . . . . . 11
⊢
(∀𝑦 ∈
{1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ((𝐹 ∘ 𝑏)‘1) = (({〈1, 1〉} ∪ 𝑐)‘1)) |
353 | 348, 352 | sylibr 237 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)) |
354 | 353 | biantrurd 536 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦)))) |
355 | | ralunb 4105 |
. . . . . . . . 9
⊢
(∀𝑦 ∈
({1} ∪ (2...(𝑁 +
1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (∀𝑦 ∈ {1} ((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
356 | 354, 355 | bitr4di 292 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
357 | 176 | adantl 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = ((𝐹 ∘ 𝑏)‘𝑦)) |
358 | 357 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → ((𝐹 ∘ 𝑏)‘𝑦) = (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦)) |
359 | 246 | adantlrl 720 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (({〈1, 1〉} ∪
𝑐)‘𝑦) = (𝑐‘𝑦)) |
360 | 358, 359 | eqeq12d 2753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) ∧ 𝑦 ∈ (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
361 | 360 | ralbidva 3117 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (2...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
362 | 92 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({1} ∪ (2...(𝑁 + 1))) = (1...(𝑁 + 1))) |
363 | 362 | raleqdv 3325 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ ({1} ∪ (2...(𝑁 + 1)))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
364 | 356, 361,
363 | 3bitr3rd 313 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦) ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
365 | 57 | adantrr 717 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1))) |
366 | 202 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1))) |
367 | | f1ofn 6662 |
. . . . . . . . 9
⊢
(({〈1, 1〉} ∪ 𝑐):(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) → ({〈1, 1〉} ∪
𝑐) Fn (1...(𝑁 + 1))) |
368 | 366, 367 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) |
369 | | eqfnfv 6852 |
. . . . . . . 8
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ ({〈1, 1〉} ∪ 𝑐) Fn (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
370 | 365, 368,
369 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ∀𝑦 ∈ (1...(𝑁 + 1))((𝐹 ∘ 𝑏)‘𝑦) = (({〈1, 1〉} ∪ 𝑐)‘𝑦))) |
371 | | fnssres 6500 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑏) Fn (1...(𝑁 + 1)) ∧ (2...(𝑁 + 1)) ⊆ (1...(𝑁 + 1))) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
372 | 365, 119,
371 | sylancl 589 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1))) |
373 | 193 | adantrl 716 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1))) |
374 | | f1ofn 6662 |
. . . . . . . . 9
⊢ (𝑐:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) → 𝑐 Fn (2...(𝑁 + 1))) |
375 | 373, 374 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → 𝑐 Fn (2...(𝑁 + 1))) |
376 | | eqfnfv 6852 |
. . . . . . . 8
⊢ ((((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) Fn (2...(𝑁 + 1)) ∧ 𝑐 Fn (2...(𝑁 + 1))) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
377 | 372, 375,
376 | syl2anc 587 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ ∀𝑦 ∈ (2...(𝑁 + 1))(((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))‘𝑦) = (𝑐‘𝑦))) |
378 | 364, 370,
377 | 3bitr4d 314 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐)) |
379 | | eqcom 2744 |
. . . . . 6
⊢ (((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))) = 𝑐 ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))) |
380 | 378, 379 | bitrdi 290 |
. . . . 5
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → ((𝐹 ∘ 𝑏) = ({〈1, 1〉} ∪ 𝑐) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
381 | 333, 345,
380 | 3bitr3d 312 |
. . . 4
⊢ ((𝜑 ∧ (𝑏 ∈ 𝐵 ∧ 𝑐 ∈ 𝐶)) → (𝑏 = (𝐹 ∘ ({〈1, 1〉} ∪ 𝑐)) ↔ 𝑐 = ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1))))) |
382 | 12, 183, 323, 381 | f1o2d 7459 |
. . 3
⊢ (𝜑 → (𝑏 ∈ 𝐵 ↦ ((𝐹 ∘ 𝑏) ↾ (2...(𝑁 + 1)))):𝐵–1-1-onto→𝐶) |
383 | 11, 382 | hasheqf1od 13920 |
. 2
⊢ (𝜑 → (♯‘𝐵) = (♯‘𝐶)) |
384 | 13, 14 | derangen2 32849 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (𝑆‘(♯‘(2...(𝑁 + 1))))) |
385 | 13 | derangval 32842 |
. . . . . 6
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘{𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)})) |
386 | 181 | fveq2i 6720 |
. . . . . 6
⊢
(♯‘𝐶) =
(♯‘{𝑓 ∣
(𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)}) |
387 | 385, 386 | eqtr4di 2796 |
. . . . 5
⊢
((2...(𝑁 + 1))
∈ Fin → (𝐷‘(2...(𝑁 + 1))) = (♯‘𝐶)) |
388 | 384, 387 | eqtr3d 2779 |
. . . 4
⊢
((2...(𝑁 + 1))
∈ Fin → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶)) |
389 | 163, 388 | ax-mp 5 |
. . 3
⊢ (𝑆‘(♯‘(2...(𝑁 + 1)))) = (♯‘𝐶) |
390 | 15, 59 | eleqtrdi 2848 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
391 | | eluzp1p1 12466 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘1) → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
392 | 390, 391 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘(1 + 1))) |
393 | | df-2 11893 |
. . . . . . . 8
⊢ 2 = (1 +
1) |
394 | 393 | fveq2i 6720 |
. . . . . . 7
⊢
(ℤ≥‘2) = (ℤ≥‘(1 +
1)) |
395 | 392, 394 | eleqtrrdi 2849 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈
(ℤ≥‘2)) |
396 | | hashfz 13994 |
. . . . . 6
⊢ ((𝑁 + 1) ∈
(ℤ≥‘2) → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
397 | 395, 396 | syl 17 |
. . . . 5
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = (((𝑁 + 1) − 2) + 1)) |
398 | 58 | nncnd 11846 |
. . . . . 6
⊢ (𝜑 → (𝑁 + 1) ∈ ℂ) |
399 | | 2cnd 11908 |
. . . . . 6
⊢ (𝜑 → 2 ∈
ℂ) |
400 | | 1cnd 10828 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
401 | 398, 399,
400 | subsubd 11217 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = (((𝑁 + 1) − 2) +
1)) |
402 | | 2m1e1 11956 |
. . . . . . 7
⊢ (2
− 1) = 1 |
403 | 402 | oveq2i 7224 |
. . . . . 6
⊢ ((𝑁 + 1) − (2 − 1)) =
((𝑁 + 1) −
1) |
404 | 15 | nncnd 11846 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℂ) |
405 | | ax-1cn 10787 |
. . . . . . 7
⊢ 1 ∈
ℂ |
406 | | pncan 11084 |
. . . . . . 7
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑁 + 1)
− 1) = 𝑁) |
407 | 404, 405,
406 | sylancl 589 |
. . . . . 6
⊢ (𝜑 → ((𝑁 + 1) − 1) = 𝑁) |
408 | 403, 407 | syl5eq 2790 |
. . . . 5
⊢ (𝜑 → ((𝑁 + 1) − (2 − 1)) = 𝑁) |
409 | 397, 401,
408 | 3eqtr2d 2783 |
. . . 4
⊢ (𝜑 → (♯‘(2...(𝑁 + 1))) = 𝑁) |
410 | 409 | fveq2d 6721 |
. . 3
⊢ (𝜑 → (𝑆‘(♯‘(2...(𝑁 + 1)))) = (𝑆‘𝑁)) |
411 | 389, 410 | eqtr3id 2792 |
. 2
⊢ (𝜑 → (♯‘𝐶) = (𝑆‘𝑁)) |
412 | 383, 411 | eqtrd 2777 |
1
⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) |