MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znhash Structured version   Visualization version   GIF version

Theorem znhash 20266
Description: The ℤ/n structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
znhash.1 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
znhash (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)

Proof of Theorem znhash
StepHypRef Expression
1 nnnn0 11626 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 zntos.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
3 znhash.1 . . . . . 6 𝐵 = (Base‘𝑌)
4 eqid 2825 . . . . . 6 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
5 eqid 2825 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
62, 3, 4, 5znf1o 20259 . . . . 5 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵)
71, 6syl 17 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵)
8 nnne0 11386 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
9 ifnefalse 4318 . . . . 5 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
10 f1oeq2 6368 . . . . 5 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵))
118, 9, 103syl 18 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵))
127, 11mpbid 224 . . 3 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵)
13 ovex 6937 . . . 4 (0..^𝑁) ∈ V
1413f1oen 8243 . . 3 (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵 → (0..^𝑁) ≈ 𝐵)
15 ensym 8271 . . 3 ((0..^𝑁) ≈ 𝐵𝐵 ≈ (0..^𝑁))
16 hasheni 13428 . . 3 (𝐵 ≈ (0..^𝑁) → (♯‘𝐵) = (♯‘(0..^𝑁)))
1712, 14, 15, 164syl 19 . 2 (𝑁 ∈ ℕ → (♯‘𝐵) = (♯‘(0..^𝑁)))
18 hashfzo0 13506 . . 3 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
191, 18syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
2017, 19eqtrd 2861 1 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198   = wceq 1658  wcel 2166  wne 2999  ifcif 4306   class class class wbr 4873  cres 5344  1-1-ontowf1o 6122  cfv 6123  (class class class)co 6905  cen 8219  0cc0 10252  cn 11350  0cn0 11618  cz 11704  ..^cfzo 12760  chash 13410  Basecbs 16222  ℤRHomczrh 20208  ℤ/nczn 20211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-tpos 7617  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-er 8009  df-ec 8011  df-qs 8015  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-card 9078  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-rp 12113  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-hash 13411  df-dvds 15358  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-0g 16455  df-imas 16521  df-qus 16522  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-mhm 17688  df-grp 17779  df-minusg 17780  df-sbg 17781  df-mulg 17895  df-subg 17942  df-nsg 17943  df-eqg 17944  df-ghm 18009  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-cring 18904  df-oppr 18977  df-dvdsr 18995  df-rnghom 19071  df-subrg 19134  df-lmod 19221  df-lss 19289  df-lsp 19331  df-sra 19533  df-rgmod 19534  df-lidl 19535  df-rsp 19536  df-2idl 19593  df-cnfld 20107  df-zring 20179  df-zrh 20212  df-zn 20215
This theorem is referenced by:  znfi  20267  znfld  20268  znidomb  20269  frlmpwfi  38511  isnumbasgrplem3  38518  cznnring  42803
  Copyright terms: Public domain W3C validator