MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znhash Structured version   Visualization version   GIF version

Theorem znhash 20704
Description: The ℤ/n structure has 𝑛 elements. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
znhash.1 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
znhash (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)

Proof of Theorem znhash
StepHypRef Expression
1 nnnn0 11903 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 zntos.y . . . . . 6 𝑌 = (ℤ/nℤ‘𝑁)
3 znhash.1 . . . . . 6 𝐵 = (Base‘𝑌)
4 eqid 2821 . . . . . 6 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
5 eqid 2821 . . . . . 6 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
62, 3, 4, 5znf1o 20697 . . . . 5 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵)
71, 6syl 17 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵)
8 nnne0 11670 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
9 ifnefalse 4478 . . . . 5 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
10 f1oeq2 6604 . . . . 5 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵))
118, 9, 103syl 18 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto𝐵 ↔ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵))
127, 11mpbid 234 . . 3 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵)
13 ovex 7188 . . . 4 (0..^𝑁) ∈ V
1413f1oen 8529 . . 3 (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):(0..^𝑁)–1-1-onto𝐵 → (0..^𝑁) ≈ 𝐵)
15 ensym 8557 . . 3 ((0..^𝑁) ≈ 𝐵𝐵 ≈ (0..^𝑁))
16 hasheni 13707 . . 3 (𝐵 ≈ (0..^𝑁) → (♯‘𝐵) = (♯‘(0..^𝑁)))
1712, 14, 15, 164syl 19 . 2 (𝑁 ∈ ℕ → (♯‘𝐵) = (♯‘(0..^𝑁)))
18 hashfzo0 13790 . . 3 (𝑁 ∈ ℕ0 → (♯‘(0..^𝑁)) = 𝑁)
191, 18syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(0..^𝑁)) = 𝑁)
2017, 19eqtrd 2856 1 (𝑁 ∈ ℕ → (♯‘𝐵) = 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1533  wcel 2110  wne 3016  ifcif 4466   class class class wbr 5065  cres 5556  1-1-ontowf1o 6353  cfv 6354  (class class class)co 7155  cen 8505  0cc0 10536  cn 11637  0cn0 11896  cz 11980  ..^cfzo 13032  chash 13689  Basecbs 16482  ℤRHomczrh 20646  ℤ/nczn 20649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-ec 8290  df-qs 8294  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-hash 13690  df-dvds 15607  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-0g 16714  df-imas 16780  df-qus 16781  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-grp 18105  df-minusg 18106  df-sbg 18107  df-mulg 18224  df-subg 18275  df-nsg 18276  df-eqg 18277  df-ghm 18355  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-rnghom 19466  df-subrg 19532  df-lmod 19635  df-lss 19703  df-lsp 19743  df-sra 19943  df-rgmod 19944  df-lidl 19945  df-rsp 19946  df-2idl 20004  df-cnfld 20545  df-zring 20617  df-zrh 20650  df-zn 20653
This theorem is referenced by:  znfi  20705  znfld  20706  znidomb  20707  frlmpwfi  39698  isnumbasgrplem3  39705  cznnring  44228
  Copyright terms: Public domain W3C validator