MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsnf Structured version   Visualization version   GIF version

Theorem sumsnf 15383
Description: A sum of a singleton is the term. A version of sumsn 15386 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2906 . . . 4 𝑚𝐴
2 nfcsb1v 3853 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3842 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvsumi 15337 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3831 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 11914 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 482 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 6740 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 586 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12280 . . . . . 6 1 ∈ ℤ
12 fzsn 13227 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6689 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 233 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4575 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 481 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3832 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . 9 𝑘𝐵
2019a1i 11 . . . . . . . 8 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3862 . . . . . . 7 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 722 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 765 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2839 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2839 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 722 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 13196 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 6760 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 7034 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 586 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2801 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3832 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 6760 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 484 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 7034 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 586 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2801 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2789 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum 15360 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40eqtrid 2790 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 13663 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2778 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wnfc 2886  csb 3828  {csn 4558  cop 4564  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  1c1 10803   + caddc 10805  cn 11903  cz 12249  ...cfz 13168  seqcseq 13649  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326
This theorem is referenced by:  fsumsplitsn  15384  sumsn  15386
  Copyright terms: Public domain W3C validator