![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sumsnf | Structured version Visualization version GIF version |
Description: A sum of a singleton is the term. A version of sumsn 15636 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
sumsnf.1 | ⊢ Ⅎ𝑘𝐵 |
sumsnf.2 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
sumsnf | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
2 | nfcsb1v 3881 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
3 | csbeq1a 3870 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
4 | 1, 2, 3 | cbvsumi 15587 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
5 | csbeq1 3859 | . . . 4 ⊢ (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) | |
6 | 1nn 12169 | . . . . 5 ⊢ 1 ∈ ℕ | |
7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈ ℕ) |
8 | simpl 484 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝑀 ∈ 𝑉) | |
9 | f1osng 6826 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) | |
10 | 6, 8, 9 | sylancr 588 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
11 | 1z 12538 | . . . . . 6 ⊢ 1 ∈ ℤ | |
12 | fzsn 13489 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
13 | f1oeq2 6774 | . . . . . 6 ⊢ ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})) | |
14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}) |
15 | 10, 14 | sylibr 233 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀}) |
16 | elsni 4604 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
17 | 16 | adantl 483 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
18 | 17 | csbeq1d 3860 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
19 | sumsnf.1 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐵 | |
20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑘𝐵) |
21 | sumsnf.2 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
22 | 20, 21 | csbiegf 3890 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
23 | 22 | ad2antrr 725 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
24 | simplr 768 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) | |
25 | 23, 24 | eqeltrd 2834 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
26 | 18, 25 | eqeltrd 2834 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
27 | 22 | ad2antrr 725 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
28 | elfz1eq 13458 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
29 | 28 | fveq2d 6847 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1)) |
30 | fvsng 7127 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀) | |
31 | 6, 8, 30 | sylancr 588 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀) |
32 | 29, 31 | sylan9eqr 2795 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀) |
33 | 32 | csbeq1d 3860 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
34 | 28 | fveq2d 6847 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1)) |
35 | simpr 486 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
36 | fvsng 7127 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵) | |
37 | 6, 35, 36 | sylancr 588 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵) |
38 | 34, 37 | sylan9eqr 2795 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵) |
39 | 27, 33, 38 | 3eqtr4rd 2784 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ⦋({⟨1, 𝑀⟩}‘𝑛) / 𝑘⦌𝐴) |
40 | 5, 7, 15, 26, 39 | fsum 15610 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
41 | 4, 40 | eqtrid 2785 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1)) |
42 | 11, 37 | seq1i 13926 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵) |
43 | 41, 42 | eqtrd 2773 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Ⅎwnfc 2884 ⦋csb 3856 {csn 4587 ⟨cop 4593 –1-1-onto→wf1o 6496 ‘cfv 6497 (class class class)co 7358 ℂcc 11054 1c1 11057 + caddc 11059 ℕcn 12158 ℤcz 12504 ...cfz 13430 seqcseq 13912 Σcsu 15576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-inf2 9582 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 ax-pre-sup 11134 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-isom 6506 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-sup 9383 df-oi 9451 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-div 11818 df-nn 12159 df-2 12221 df-3 12222 df-n0 12419 df-z 12505 df-uz 12769 df-rp 12921 df-fz 13431 df-fzo 13574 df-seq 13913 df-exp 13974 df-hash 14237 df-cj 14990 df-re 14991 df-im 14992 df-sqrt 15126 df-abs 15127 df-clim 15376 df-sum 15577 |
This theorem is referenced by: fsumsplitsn 15634 sumsn 15636 |
Copyright terms: Public domain | W3C validator |