MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sumsnf Structured version   Visualization version   GIF version

Theorem sumsnf 15791
Description: A sum of a singleton is the term. A version of sumsn 15794 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
sumsnf.1 𝑘𝐵
sumsnf.2 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
sumsnf ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝑘,𝑀   𝑘,𝑉
Allowed substitution hints:   𝐴(𝑘)   𝐵(𝑘)

Proof of Theorem sumsnf
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 csbeq1a 3935 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
2 nfcv 2908 . . . 4 𝑚𝐴
3 nfcsb1v 3946 . . . 4 𝑘𝑚 / 𝑘𝐴
41, 2, 3cbvsum 15743 . . 3 Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3924 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 12304 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 simpl 482 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀𝑉)
9 f1osng 6903 . . . . . 6 ((1 ∈ ℕ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
106, 8, 9sylancr 586 . . . . 5 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
11 1z 12673 . . . . . 6 1 ∈ ℤ
12 fzsn 13626 . . . . . 6 (1 ∈ ℤ → (1...1) = {1})
13 f1oeq2 6851 . . . . . 6 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1411, 12, 13mp2b 10 . . . . 5 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
1510, 14sylibr 234 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
16 elsni 4665 . . . . . . 7 (𝑚 ∈ {𝑀} → 𝑚 = 𝑀)
1716adantl 481 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀)
1817csbeq1d 3925 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 sumsnf.1 . . . . . . . . 9 𝑘𝐵
2019a1i 11 . . . . . . . 8 (𝑀𝑉𝑘𝐵)
21 sumsnf.2 . . . . . . . 8 (𝑘 = 𝑀𝐴 = 𝐵)
2220, 21csbiegf 3955 . . . . . . 7 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2322ad2antrr 725 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 = 𝐵)
24 simplr 768 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2523, 24eqeltrd 2844 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑀 / 𝑘𝐴 ∈ ℂ)
2618, 25eqeltrd 2844 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2722ad2antrr 725 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → 𝑀 / 𝑘𝐴 = 𝐵)
28 elfz1eq 13595 . . . . . . . 8 (𝑛 ∈ (1...1) → 𝑛 = 1)
2928fveq2d 6924 . . . . . . 7 (𝑛 ∈ (1...1) → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
30 fvsng 7214 . . . . . . . 8 ((1 ∈ ℕ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
316, 8, 30sylancr 586 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3229, 31sylan9eqr 2802 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) = 𝑀)
3332csbeq1d 3925 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
3428fveq2d 6924 . . . . . 6 (𝑛 ∈ (1...1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
35 simpr 484 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
36 fvsng 7214 . . . . . . 7 ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
376, 35, 36sylancr 586 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3834, 37sylan9eqr 2802 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = 𝐵)
3927, 33, 383eqtr4rd 2791 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
405, 7, 15, 26, 39fsum 15768 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
414, 40eqtrid 2792 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {⟨1, 𝐵⟩})‘1))
4211, 37seq1i 14066 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( + , {⟨1, 𝐵⟩})‘1) = 𝐵)
4341, 42eqtrd 2780 1 ((𝑀𝑉𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wnfc 2893  csb 3921  {csn 4648  cop 4654  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  1c1 11185   + caddc 11187  cn 12293  cz 12639  ...cfz 13567  seqcseq 14052  Σcsu 15734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735
This theorem is referenced by:  fsumsplitsn  15792  sumsn  15794
  Copyright terms: Public domain W3C validator