| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sumsnf | Structured version Visualization version GIF version | ||
| Description: A sum of a singleton is the term. A version of sumsn 15762 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| sumsnf.1 | ⊢ Ⅎ𝑘𝐵 |
| sumsnf.2 | ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| sumsnf | ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbeq1a 3888 | . . . 4 ⊢ (𝑘 = 𝑚 → 𝐴 = ⦋𝑚 / 𝑘⦌𝐴) | |
| 2 | nfcv 2898 | . . . 4 ⊢ Ⅎ𝑚𝐴 | |
| 3 | nfcsb1v 3898 | . . . 4 ⊢ Ⅎ𝑘⦋𝑚 / 𝑘⦌𝐴 | |
| 4 | 1, 2, 3 | cbvsum 15711 | . . 3 ⊢ Σ𝑘 ∈ {𝑀}𝐴 = Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 |
| 5 | csbeq1 3877 | . . . 4 ⊢ (𝑚 = ({〈1, 𝑀〉}‘𝑛) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) | |
| 6 | 1nn 12251 | . . . . 5 ⊢ 1 ∈ ℕ | |
| 7 | 6 | a1i 11 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 1 ∈ ℕ) |
| 8 | simpl 482 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝑀 ∈ 𝑉) | |
| 9 | f1osng 6859 | . . . . . 6 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) | |
| 10 | 6, 8, 9 | sylancr 587 | . . . . 5 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 11 | 1z 12622 | . . . . . 6 ⊢ 1 ∈ ℤ | |
| 12 | fzsn 13583 | . . . . . 6 ⊢ (1 ∈ ℤ → (1...1) = {1}) | |
| 13 | f1oeq2 6807 | . . . . . 6 ⊢ ((1...1) = {1} → ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀})) | |
| 14 | 11, 12, 13 | mp2b 10 | . . . . 5 ⊢ ({〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀} ↔ {〈1, 𝑀〉}:{1}–1-1-onto→{𝑀}) |
| 15 | 10, 14 | sylibr 234 | . . . 4 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → {〈1, 𝑀〉}:(1...1)–1-1-onto→{𝑀}) |
| 16 | elsni 4618 | . . . . . . 7 ⊢ (𝑚 ∈ {𝑀} → 𝑚 = 𝑀) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 = 𝑀) |
| 18 | 17 | csbeq1d 3878 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 19 | sumsnf.1 | . . . . . . . . 9 ⊢ Ⅎ𝑘𝐵 | |
| 20 | 19 | a1i 11 | . . . . . . . 8 ⊢ (𝑀 ∈ 𝑉 → Ⅎ𝑘𝐵) |
| 21 | sumsnf.2 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐵) | |
| 22 | 20, 21 | csbiegf 3907 | . . . . . . 7 ⊢ (𝑀 ∈ 𝑉 → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 23 | 22 | ad2antrr 726 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 24 | simplr 768 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ) | |
| 25 | 23, 24 | eqeltrd 2834 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑀 / 𝑘⦌𝐴 ∈ ℂ) |
| 26 | 18, 25 | eqeltrd 2834 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → ⦋𝑚 / 𝑘⦌𝐴 ∈ ℂ) |
| 27 | 22 | ad2antrr 726 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋𝑀 / 𝑘⦌𝐴 = 𝐵) |
| 28 | elfz1eq 13552 | . . . . . . . 8 ⊢ (𝑛 ∈ (1...1) → 𝑛 = 1) | |
| 29 | 28 | fveq2d 6880 | . . . . . . 7 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝑀〉}‘𝑛) = ({〈1, 𝑀〉}‘1)) |
| 30 | fvsng 7172 | . . . . . . . 8 ⊢ ((1 ∈ ℕ ∧ 𝑀 ∈ 𝑉) → ({〈1, 𝑀〉}‘1) = 𝑀) | |
| 31 | 6, 8, 30 | sylancr 587 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝑀〉}‘1) = 𝑀) |
| 32 | 29, 31 | sylan9eqr 2792 | . . . . . 6 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝑀〉}‘𝑛) = 𝑀) |
| 33 | 32 | csbeq1d 3878 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴 = ⦋𝑀 / 𝑘⦌𝐴) |
| 34 | 28 | fveq2d 6880 | . . . . . 6 ⊢ (𝑛 ∈ (1...1) → ({〈1, 𝐵〉}‘𝑛) = ({〈1, 𝐵〉}‘1)) |
| 35 | simpr 484 | . . . . . . 7 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 36 | fvsng 7172 | . . . . . . 7 ⊢ ((1 ∈ ℕ ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) | |
| 37 | 6, 35, 36 | sylancr 587 | . . . . . 6 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → ({〈1, 𝐵〉}‘1) = 𝐵) |
| 38 | 34, 37 | sylan9eqr 2792 | . . . . 5 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = 𝐵) |
| 39 | 27, 33, 38 | 3eqtr4rd 2781 | . . . 4 ⊢ (((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({〈1, 𝐵〉}‘𝑛) = ⦋({〈1, 𝑀〉}‘𝑛) / 𝑘⦌𝐴) |
| 40 | 5, 7, 15, 26, 39 | fsum 15736 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑚 ∈ {𝑀}⦋𝑚 / 𝑘⦌𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 41 | 4, 40 | eqtrid 2782 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = (seq1( + , {〈1, 𝐵〉})‘1)) |
| 42 | 11, 37 | seq1i 14033 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → (seq1( + , {〈1, 𝐵〉})‘1) = 𝐵) |
| 43 | 41, 42 | eqtrd 2770 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ 𝐵 ∈ ℂ) → Σ𝑘 ∈ {𝑀}𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 ⦋csb 3874 {csn 4601 〈cop 4607 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 ℂcc 11127 1c1 11130 + caddc 11132 ℕcn 12240 ℤcz 12588 ...cfz 13524 seqcseq 14019 Σcsu 15702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 |
| This theorem is referenced by: fsumsplitsn 15760 sumsn 15762 |
| Copyright terms: Public domain | W3C validator |