MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumf1o Structured version   Visualization version   GIF version

Theorem fsumf1o 14741
Description: Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
Hypotheses
Ref Expression
fsumf1o.1 (𝑘 = 𝐺𝐵 = 𝐷)
fsumf1o.2 (𝜑𝐶 ∈ Fin)
fsumf1o.3 (𝜑𝐹:𝐶1-1-onto𝐴)
fsumf1o.4 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
fsumf1o.5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
fsumf1o (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Distinct variable groups:   𝑘,𝑛,𝐴   𝐵,𝑛   𝐶,𝑛   𝐷,𝑘   𝑛,𝐹   𝑘,𝐺   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑘)   𝐷(𝑛)   𝐹(𝑘)   𝐺(𝑛)

Proof of Theorem fsumf1o
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sum0 14739 . . . 4 Σ𝑘 ∈ ∅ 𝐵 = 0
2 fsumf1o.3 . . . . . . . 8 (𝜑𝐹:𝐶1-1-onto𝐴)
3 f1oeq2 6311 . . . . . . . 8 (𝐶 = ∅ → (𝐹:𝐶1-1-onto𝐴𝐹:∅–1-1-onto𝐴))
42, 3syl5ibcom 236 . . . . . . 7 (𝜑 → (𝐶 = ∅ → 𝐹:∅–1-1-onto𝐴))
54imp 395 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐹:∅–1-1-onto𝐴)
6 f1ofo 6327 . . . . . 6 (𝐹:∅–1-1-onto𝐴𝐹:∅–onto𝐴)
7 fo00 6355 . . . . . . 7 (𝐹:∅–onto𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
87simprbi 490 . . . . . 6 (𝐹:∅–onto𝐴𝐴 = ∅)
95, 6, 83syl 18 . . . . 5 ((𝜑𝐶 = ∅) → 𝐴 = ∅)
109sumeq1d 14718 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
11 simpr 477 . . . . . 6 ((𝜑𝐶 = ∅) → 𝐶 = ∅)
1211sumeq1d 14718 . . . . 5 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = Σ𝑛 ∈ ∅ 𝐷)
13 sum0 14739 . . . . 5 Σ𝑛 ∈ ∅ 𝐷 = 0
1412, 13syl6eq 2815 . . . 4 ((𝜑𝐶 = ∅) → Σ𝑛𝐶 𝐷 = 0)
151, 10, 143eqtr4a 2825 . . 3 ((𝜑𝐶 = ∅) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
1615ex 401 . 2 (𝜑 → (𝐶 = ∅ → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
17 2fveq3 6380 . . . . . . . 8 (𝑚 = (𝑓𝑛) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
18 simprl 787 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (♯‘𝐶) ∈ ℕ)
19 simprr 789 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)
20 f1of 6320 . . . . . . . . . . . 12 (𝐹:𝐶1-1-onto𝐴𝐹:𝐶𝐴)
212, 20syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐶𝐴)
2221ffvelrnda 6549 . . . . . . . . . 10 ((𝜑𝑚𝐶) → (𝐹𝑚) ∈ 𝐴)
23 fsumf1o.5 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2423fmpttd 6575 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶ℂ)
2524ffvelrnda 6549 . . . . . . . . . 10 ((𝜑 ∧ (𝐹𝑚) ∈ 𝐴) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2622, 25syldan 585 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
2726adantlr 706 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑚)) ∈ ℂ)
282adantr 472 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝐹:𝐶1-1-onto𝐴)
29 f1oco 6342 . . . . . . . . . . . 12 ((𝐹:𝐶1-1-onto𝐴𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
3028, 19, 29syl2anc 579 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴)
31 f1of 6320 . . . . . . . . . . 11 ((𝐹𝑓):(1...(♯‘𝐶))–1-1-onto𝐴 → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
3230, 31syl 17 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝐹𝑓):(1...(♯‘𝐶))⟶𝐴)
33 fvco3 6464 . . . . . . . . . 10 (((𝐹𝑓):(1...(♯‘𝐶))⟶𝐴𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
3432, 33sylan 575 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
35 f1of 6320 . . . . . . . . . . . 12 (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶𝑓:(1...(♯‘𝐶))⟶𝐶)
3635ad2antll 720 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → 𝑓:(1...(♯‘𝐶))⟶𝐶)
37 fvco3 6464 . . . . . . . . . . 11 ((𝑓:(1...(♯‘𝐶))⟶𝐶𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3836, 37sylan 575 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝐹𝑓)‘𝑛) = (𝐹‘(𝑓𝑛)))
3938fveq2d 6379 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4034, 39eqtrd 2799 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑛 ∈ (1...(♯‘𝐶))) → (((𝑘𝐴𝐵) ∘ (𝐹𝑓))‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹‘(𝑓𝑛))))
4117, 18, 19, 27, 40fsum 14738 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(♯‘𝐶)))
42 fsumf1o.4 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)
4321ffvelrnda 6549 . . . . . . . . . . . . . 14 ((𝜑𝑛𝐶) → (𝐹𝑛) ∈ 𝐴)
4442, 43eqeltrrd 2845 . . . . . . . . . . . . 13 ((𝜑𝑛𝐶) → 𝐺𝐴)
45 fsumf1o.1 . . . . . . . . . . . . . 14 (𝑘 = 𝐺𝐵 = 𝐷)
46 eqid 2765 . . . . . . . . . . . . . 14 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
4745, 46fvmpti 6470 . . . . . . . . . . . . 13 (𝐺𝐴 → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
4844, 47syl 17 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘𝐺) = ( I ‘𝐷))
4942fveq2d 6379 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘𝐺))
50 eqid 2765 . . . . . . . . . . . . . 14 (𝑛𝐶𝐷) = (𝑛𝐶𝐷)
5150fvmpt2i 6479 . . . . . . . . . . . . 13 (𝑛𝐶 → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5251adantl 473 . . . . . . . . . . . 12 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ( I ‘𝐷))
5348, 49, 523eqtr4rd 2810 . . . . . . . . . . 11 ((𝜑𝑛𝐶) → ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
5453ralrimiva 3113 . . . . . . . . . 10 (𝜑 → ∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)))
55 nffvmpt1 6386 . . . . . . . . . . . 12 𝑛((𝑛𝐶𝐷)‘𝑚)
5655nfeq1 2921 . . . . . . . . . . 11 𝑛((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))
57 fveq2 6375 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑛𝐶𝐷)‘𝑛) = ((𝑛𝐶𝐷)‘𝑚))
58 2fveq3 6380 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝑘𝐴𝐵)‘(𝐹𝑛)) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
5957, 58eqeq12d 2780 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) ↔ ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6056, 59rspc 3455 . . . . . . . . . 10 (𝑚𝐶 → (∀𝑛𝐶 ((𝑛𝐶𝐷)‘𝑛) = ((𝑘𝐴𝐵)‘(𝐹𝑛)) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚))))
6154, 60mpan9 502 . . . . . . . . 9 ((𝜑𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6261adantlr 706 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐶) → ((𝑛𝐶𝐷)‘𝑚) = ((𝑘𝐴𝐵)‘(𝐹𝑚)))
6362sumeq2dv 14720 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑚𝐶 ((𝑘𝐴𝐵)‘(𝐹𝑚)))
64 fveq2 6375 . . . . . . . 8 (𝑚 = ((𝐹𝑓)‘𝑛) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘((𝐹𝑓)‘𝑛)))
6524adantr 472 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6665ffvelrnda 6549 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
6764, 18, 30, 66, 34fsum 14738 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , ((𝑘𝐴𝐵) ∘ (𝐹𝑓)))‘(♯‘𝐶)))
6841, 63, 673eqtr4rd 2810 . . . . . 6 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚))
69 sumfc 14727 . . . . . 6 Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵
70 sumfc 14727 . . . . . 6 Σ𝑚𝐶 ((𝑛𝐶𝐷)‘𝑚) = Σ𝑛𝐶 𝐷
7168, 69, 703eqtr3g 2822 . . . . 5 ((𝜑 ∧ ((♯‘𝐶) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
7271expr 448 . . . 4 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7372exlimdv 2028 . . 3 ((𝜑 ∧ (♯‘𝐶) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
7473expimpd 445 . 2 (𝜑 → (((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶) → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷))
75 fsumf1o.2 . . 3 (𝜑𝐶 ∈ Fin)
76 fz1f1o 14728 . . 3 (𝐶 ∈ Fin → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
7775, 76syl 17 . 2 (𝜑 → (𝐶 = ∅ ∨ ((♯‘𝐶) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐶))–1-1-onto𝐶)))
7816, 74, 77mpjaod 886 1 (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wo 873   = wceq 1652  wex 1874  wcel 2155  wral 3055  c0 4079  cmpt 4888   I cid 5184  ccom 5281  wf 6064  ontowfo 6066  1-1-ontowf1o 6067  cfv 6068  (class class class)co 6842  Fincfn 8160  cc 10187  0cc0 10189  1c1 10190   + caddc 10192  cn 11274  ...cfz 12533  seqcseq 13008  chash 13321  Σcsu 14703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-n0 11539  df-z 11625  df-uz 11887  df-rp 12029  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-sum 14704
This theorem is referenced by:  fsumss  14743  fsum2dlem  14788  fsumcnv  14791  fsumrev  14797  fsumshft  14798  ackbijnn  14846  incexclem  14854  phisum  15776  ovoliunlem1  23560  ovolicc2lem4  23578  itg1addlem4  23757  itg1mulc  23762  basellem3  25100  basellem5  25102  fsumdvdscom  25202  dvdsflsumcom  25205  musum  25208  fsumdvdsmul  25212  sgmppw  25213  fsumvma  25229  dchrsum2  25284  sumdchr2  25286  dchrisumlem1  25469  dchrisum0flblem1  25488  dchrisum0fno1  25491  fsumiunle  29959  eulerpartlemgs2  30824  reprpmtf1o  31087  breprexplema  31091  hgt750lemb  31117  hgt750lema  31118  fsumf1of  40376  sumnnodd  40432  dvnprodlem2  40732
  Copyright terms: Public domain W3C validator