MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodsn Structured version   Visualization version   GIF version

Theorem prodsn 15978
Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypothesis
Ref Expression
prodsn.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsn ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem prodsn
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2898 . . . 4 𝑚𝐴
2 nfcsb1v 3898 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3888 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 15931 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3877 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 12251 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 12622 . . . . . 6 1 ∈ ℤ
9 f1osng 6859 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 13583 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 6807 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 234 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 690 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 480 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 4617 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3877 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 nfcvd 2899 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
20 prodsn.1 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2119, 20csbiegf 3907 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2221adantr 480 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2318, 22sylan9eqr 2792 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2417, 23sylan2b 594 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
25 simplr 768 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2624, 25eqeltrd 2834 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2711eleq2i 2826 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
28 velsn 4617 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
2927, 28bitri 275 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
30 fvsng 7172 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
318, 30mpan 690 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3231adantr 480 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332csbeq1d 3878 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
34 simpr 484 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
35 fvsng 7172 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
368, 34, 35sylancr 587 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3722, 33, 363eqtr4rd 2781 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
38 fveq2 6876 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
39 fveq2 6876 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4039csbeq1d 3878 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4138, 40eqeq12d 2751 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4237, 41syl5ibrcom 247 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4342imp 406 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4429, 43sylan2b 594 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
455, 7, 16, 26, 44fprod 15957 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
464, 45eqtrid 2782 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
478, 36seq1i 14033 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , {⟨1, 𝐵⟩})‘1) = 𝐵)
4846, 47eqtrd 2770 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  csb 3874  {csn 4601  cop 4607  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cc 11127  1c1 11130   · cmul 11134  cn 12240  cz 12588  ...cfz 13524  seqcseq 14019  cprod 15919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-clim 15504  df-prod 15920
This theorem is referenced by:  fprod1  15979  fprodm1  15983  fprod1p  15984  prodsns  15988  fprod2dlem  15996  fprodefsum  16111  fprodfvdvdsd  16353  prmdvdsprmo  17062  fprodeq02  32802  prodpr  32805  prodtp  32806  prodfzo03  34635  hoidmv1le  46623  ovnovollem1  46685  ovnovollem2  46686  fmtnorec2  47557
  Copyright terms: Public domain W3C validator