MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodsn Structured version   Visualization version   GIF version

Theorem prodsn 15316
Description: A product of a singleton is the term. (Contributed by Scott Fenton, 14-Dec-2017.)
Hypothesis
Ref Expression
prodsn.1 (𝑘 = 𝑀𝐴 = 𝐵)
Assertion
Ref Expression
prodsn ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑘,𝑀   𝑘,𝑉
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem prodsn
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2977 . . . 4 𝑚𝐴
2 nfcsb1v 3907 . . . 4 𝑘𝑚 / 𝑘𝐴
3 csbeq1a 3897 . . . 4 (𝑘 = 𝑚𝐴 = 𝑚 / 𝑘𝐴)
41, 2, 3cbvprodi 15271 . . 3 𝑘 ∈ {𝑀}𝐴 = ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴
5 csbeq1 3886 . . . 4 (𝑚 = ({⟨1, 𝑀⟩}‘𝑛) → 𝑚 / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
6 1nn 11649 . . . . 5 1 ∈ ℕ
76a1i 11 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → 1 ∈ ℕ)
8 1z 12013 . . . . . 6 1 ∈ ℤ
9 f1osng 6655 . . . . . . 7 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
10 fzsn 12950 . . . . . . . . 9 (1 ∈ ℤ → (1...1) = {1})
118, 10ax-mp 5 . . . . . . . 8 (1...1) = {1}
12 f1oeq2 6605 . . . . . . . 8 ((1...1) = {1} → ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀}))
1311, 12ax-mp 5 . . . . . . 7 ({⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀} ↔ {⟨1, 𝑀⟩}:{1}–1-1-onto→{𝑀})
149, 13sylibr 236 . . . . . 6 ((1 ∈ ℤ ∧ 𝑀𝑉) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
158, 14mpan 688 . . . . 5 (𝑀𝑉 → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
1615adantr 483 . . . 4 ((𝑀𝑉𝐵 ∈ ℂ) → {⟨1, 𝑀⟩}:(1...1)–1-1-onto→{𝑀})
17 velsn 4583 . . . . . 6 (𝑚 ∈ {𝑀} ↔ 𝑚 = 𝑀)
18 csbeq1 3886 . . . . . . 7 (𝑚 = 𝑀𝑚 / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
19 nfcvd 2978 . . . . . . . . 9 (𝑀𝑉𝑘𝐵)
20 prodsn.1 . . . . . . . . 9 (𝑘 = 𝑀𝐴 = 𝐵)
2119, 20csbiegf 3916 . . . . . . . 8 (𝑀𝑉𝑀 / 𝑘𝐴 = 𝐵)
2221adantr 483 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → 𝑀 / 𝑘𝐴 = 𝐵)
2318, 22sylan9eqr 2878 . . . . . 6 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 = 𝑀) → 𝑚 / 𝑘𝐴 = 𝐵)
2417, 23sylan2b 595 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 = 𝐵)
25 simplr 767 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝐵 ∈ ℂ)
2624, 25eqeltrd 2913 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑚 ∈ {𝑀}) → 𝑚 / 𝑘𝐴 ∈ ℂ)
2711eleq2i 2904 . . . . . 6 (𝑛 ∈ (1...1) ↔ 𝑛 ∈ {1})
28 velsn 4583 . . . . . 6 (𝑛 ∈ {1} ↔ 𝑛 = 1)
2927, 28bitri 277 . . . . 5 (𝑛 ∈ (1...1) ↔ 𝑛 = 1)
30 fvsng 6942 . . . . . . . . . . 11 ((1 ∈ ℤ ∧ 𝑀𝑉) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
318, 30mpan 688 . . . . . . . . . 10 (𝑀𝑉 → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3231adantr 483 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) = 𝑀)
3332csbeq1d 3887 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴 = 𝑀 / 𝑘𝐴)
34 simpr 487 . . . . . . . . 9 ((𝑀𝑉𝐵 ∈ ℂ) → 𝐵 ∈ ℂ)
35 fvsng 6942 . . . . . . . . 9 ((1 ∈ ℤ ∧ 𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
368, 34, 35sylancr 589 . . . . . . . 8 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = 𝐵)
3722, 33, 363eqtr4rd 2867 . . . . . . 7 ((𝑀𝑉𝐵 ∈ ℂ) → ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
38 fveq2 6670 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝐵⟩}‘1))
39 fveq2 6670 . . . . . . . . 9 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘1))
4039csbeq1d 3887 . . . . . . . 8 (𝑛 = 1 → ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴)
4138, 40eqeq12d 2837 . . . . . . 7 (𝑛 = 1 → (({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴 ↔ ({⟨1, 𝐵⟩}‘1) = ({⟨1, 𝑀⟩}‘1) / 𝑘𝐴))
4237, 41syl5ibrcom 249 . . . . . 6 ((𝑀𝑉𝐵 ∈ ℂ) → (𝑛 = 1 → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴))
4342imp 409 . . . . 5 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 = 1) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
4429, 43sylan2b 595 . . . 4 (((𝑀𝑉𝐵 ∈ ℂ) ∧ 𝑛 ∈ (1...1)) → ({⟨1, 𝐵⟩}‘𝑛) = ({⟨1, 𝑀⟩}‘𝑛) / 𝑘𝐴)
455, 7, 16, 26, 44fprod 15295 . . 3 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑚 ∈ {𝑀}𝑚 / 𝑘𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
464, 45syl5eq 2868 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = (seq1( · , {⟨1, 𝐵⟩})‘1))
478, 36seq1i 13384 . 2 ((𝑀𝑉𝐵 ∈ ℂ) → (seq1( · , {⟨1, 𝐵⟩})‘1) = 𝐵)
4846, 47eqtrd 2856 1 ((𝑀𝑉𝐵 ∈ ℂ) → ∏𝑘 ∈ {𝑀}𝐴 = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  csb 3883  {csn 4567  cop 4573  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  cc 10535  1c1 10538   · cmul 10542  cn 11638  cz 11982  ...cfz 12893  seqcseq 13370  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260
This theorem is referenced by:  fprod1  15317  fprodm1  15321  fprod1p  15322  prodsns  15326  fprod2dlem  15334  fprodefsum  15448  fprodfvdvdsd  15683  prmdvdsprmo  16378  fprodeq02  30539  prodpr  30542  prodtp  30543  prodfzo03  31874  hoidmv1le  42896  ovnovollem1  42958  ovnovollem2  42959  fmtnorec2  43725
  Copyright terms: Public domain W3C validator