MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Visualization version   GIF version

Theorem znunithash 20393
Description: The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
Assertion
Ref Expression
znunithash (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))

Proof of Theorem znunithash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfphi2 15940 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 nnnn0 11752 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 znchr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2795 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2795 . . . . . . . . . 10 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
6 eqid 2795 . . . . . . . . . 10 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
73, 4, 5, 6znf1o 20380 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
82, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
9 nnne0 11519 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
10 ifnefalse 4393 . . . . . . . . 9 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
11 reseq2 5729 . . . . . . . . . . 11 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)))
12 f1oeq1 6472 . . . . . . . . . . 11 (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
1311, 12syl 17 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
14 f1oeq2 6473 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
1513, 14bitrd 280 . . . . . . . . 9 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
169, 10, 153syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
178, 16mpbid 233 . . . . . . 7 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))
18 f1ofn 6484 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁))
19 elpreima 6693 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
2017, 18, 193syl 18 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
21 fvres 6557 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2221adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2322eleq1d 2867 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈))
24 elfzoelz 12888 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
25 znunit.u . . . . . . . . . 10 𝑈 = (Unit‘𝑌)
26 eqid 2795 . . . . . . . . . 10 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
273, 25, 26znunit 20392 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
282, 24, 27syl2an 595 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2923, 28bitrd 280 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
3029pm5.32da 579 . . . . . 6 (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3120, 30bitrd 280 . . . . 5 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3231abbi2dv 2919 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)})
33 df-rab 3114 . . . 4 {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}
3432, 33syl6eqr 2849 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3534fveq2d 6542 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
36 f1ocnv 6495 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁))
37 f1of1 6482 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
3817, 36, 373syl 18 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
39 ovexd 7050 . . . 4 (𝑁 ∈ ℕ → (0..^𝑁) ∈ V)
404, 25unitss 19100 . . . . 5 𝑈 ⊆ (Base‘𝑌)
4140a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌))
4225fvexi 6552 . . . . 5 𝑈 ∈ V
4342a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ∈ V)
44 f1imaen2g 8418 . . . 4 (((((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
4538, 39, 41, 43, 44syl22anc 835 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
46 hasheni 13558 . . 3 ((((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
4745, 46syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
481, 35, 473eqtr2rd 2838 1 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  {cab 2775  wne 2984  {crab 3109  Vcvv 3437  wss 3859  ifcif 4381   class class class wbr 4962  ccnv 5442  cres 5445  cima 5446   Fn wfn 6220  1-1wf1 6222  1-1-ontowf1o 6224  cfv 6225  (class class class)co 7016  cen 8354  0cc0 10383  1c1 10384  cn 11486  0cn0 11745  cz 11829  ..^cfzo 12883  chash 13540   gcd cgcd 15676  ϕcphi 15930  Basecbs 16312  Unitcui 19079  ℤRHomczrh 20329  ℤ/nczn 20332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461  ax-addf 10462  ax-mulf 10463
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-ec 8141  df-qs 8145  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-4 11550  df-5 11551  df-6 11552  df-7 11553  df-8 11554  df-9 11555  df-n0 11746  df-xnn0 11816  df-z 11830  df-dec 11948  df-uz 12094  df-rp 12240  df-fz 12743  df-fzo 12884  df-fl 13012  df-mod 13088  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-dvds 15441  df-gcd 15677  df-phi 15932  df-struct 16314  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-starv 16409  df-sca 16410  df-vsca 16411  df-ip 16412  df-tset 16413  df-ple 16414  df-ds 16416  df-unif 16417  df-0g 16544  df-imas 16610  df-qus 16611  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-mhm 17774  df-grp 17864  df-minusg 17865  df-sbg 17866  df-mulg 17982  df-subg 18030  df-nsg 18031  df-eqg 18032  df-ghm 18097  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-cring 18990  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-rnghom 19157  df-subrg 19223  df-lmod 19326  df-lss 19394  df-lsp 19434  df-sra 19634  df-rgmod 19635  df-lidl 19636  df-rsp 19637  df-2idl 19694  df-cnfld 20228  df-zring 20300  df-zrh 20333  df-zn 20336
This theorem is referenced by:  dchrfi  25513  dchrsum2  25526
  Copyright terms: Public domain W3C validator