MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Visualization version   GIF version

Theorem znunithash 21481
Description: The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
Assertion
Ref Expression
znunithash (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))

Proof of Theorem znunithash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfphi2 16751 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 nnnn0 12456 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 znchr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2730 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2730 . . . . . . . . . 10 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
6 eqid 2730 . . . . . . . . . 10 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
73, 4, 5, 6znf1o 21468 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
82, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
9 nnne0 12227 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
10 ifnefalse 4503 . . . . . . . . 9 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
11 reseq2 5948 . . . . . . . . . . 11 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)))
1211f1oeq1d 6798 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
13 f1oeq2 6792 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
1412, 13bitrd 279 . . . . . . . . 9 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
159, 10, 143syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
168, 15mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))
17 f1ofn 6804 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁))
18 elpreima 7033 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
1916, 17, 183syl 18 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
20 fvres 6880 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2120adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2221eleq1d 2814 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈))
23 elfzoelz 13627 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
24 znunit.u . . . . . . . . . 10 𝑈 = (Unit‘𝑌)
25 eqid 2730 . . . . . . . . . 10 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
263, 24, 25znunit 21480 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
272, 23, 26syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2822, 27bitrd 279 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2928pm5.32da 579 . . . . . 6 (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3019, 29bitrd 279 . . . . 5 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3130eqabdv 2862 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)})
32 df-rab 3409 . . . 4 {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}
3331, 32eqtr4di 2783 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3433fveq2d 6865 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
35 f1ocnv 6815 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁))
36 f1of1 6802 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
3716, 35, 363syl 18 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
38 ovexd 7425 . . . 4 (𝑁 ∈ ℕ → (0..^𝑁) ∈ V)
394, 24unitss 20292 . . . . 5 𝑈 ⊆ (Base‘𝑌)
4039a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌))
4124fvexi 6875 . . . . 5 𝑈 ∈ V
4241a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ∈ V)
43 f1imaen2g 8989 . . . 4 (((((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
4437, 38, 40, 42, 43syl22anc 838 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
45 hasheni 14320 . . 3 ((((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
4644, 45syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
471, 34, 463eqtr2rd 2772 1 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  wne 2926  {crab 3408  Vcvv 3450  wss 3917  ifcif 4491   class class class wbr 5110  ccnv 5640  cres 5643  cima 5644   Fn wfn 6509  1-1wf1 6511  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cen 8918  0cc0 11075  1c1 11076  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302   gcd cgcd 16471  ϕcphi 16741  Basecbs 17186  Unitcui 20271  ℤRHomczrh 21416  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-xnn0 12523  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-phi 16743  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423
This theorem is referenced by:  dchrfi  27173  dchrsum2  27186  aks6d1c4  42119
  Copyright terms: Public domain W3C validator