Step | Hyp | Ref
| Expression |
1 | | dfphi2 16475 |
. 2
⊢ (𝑁 ∈ ℕ →
(ϕ‘𝑁) =
(♯‘{𝑥 ∈
(0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
2 | | nnnn0 12240 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ∈
ℕ0) |
3 | | znchr.y |
. . . . . . . . . 10
⊢ 𝑌 =
(ℤ/nℤ‘𝑁) |
4 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑌) =
(Base‘𝑌) |
5 | | eqid 2738 |
. . . . . . . . . 10
⊢
((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) |
6 | | eqid 2738 |
. . . . . . . . . 10
⊢ if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁)) |
7 | 3, 4, 5, 6 | znf1o 20759 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)) |
8 | 2, 7 | syl 17 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
((ℤRHom‘𝑌)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)) |
9 | | nnne0 12007 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) |
10 | | ifnefalse 4471 |
. . . . . . . . 9
⊢ (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁)) |
11 | | reseq2 5886 |
. . . . . . . . . . 11
⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁))) |
12 | 11 | f1oeq1d 6711 |
. . . . . . . . . 10
⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))) |
13 | | f1oeq2 6705 |
. . . . . . . . . 10
⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))) |
14 | 12, 13 | bitrd 278 |
. . . . . . . . 9
⊢ (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))) |
15 | 9, 10, 14 | 3syl 18 |
. . . . . . . 8
⊢ (𝑁 ∈ ℕ →
(((ℤRHom‘𝑌)
↾ if(𝑁 = 0, ℤ,
(0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))) |
16 | 8, 15 | mpbid 231 |
. . . . . . 7
⊢ (𝑁 ∈ ℕ →
((ℤRHom‘𝑌)
↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)) |
17 | | f1ofn 6717 |
. . . . . . 7
⊢
(((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁)) |
18 | | elpreima 6935 |
. . . . . . 7
⊢
(((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈))) |
19 | 16, 17, 18 | 3syl 18 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈))) |
20 | | fvres 6793 |
. . . . . . . . . 10
⊢ (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) |
21 | 20 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥)) |
22 | 21 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈)) |
23 | | elfzoelz 13387 |
. . . . . . . . 9
⊢ (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ) |
24 | | znunit.u |
. . . . . . . . . 10
⊢ 𝑈 = (Unit‘𝑌) |
25 | | eqid 2738 |
. . . . . . . . . 10
⊢
(ℤRHom‘𝑌) = (ℤRHom‘𝑌) |
26 | 3, 24, 25 | znunit 20771 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℕ0
∧ 𝑥 ∈ ℤ)
→ (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1)) |
27 | 2, 23, 26 | syl2an 596 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1)) |
28 | 22, 27 | bitrd 278 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1)) |
29 | 28 | pm5.32da 579 |
. . . . . 6
⊢ (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1))) |
30 | 19, 29 | bitrd 278 |
. . . . 5
⊢ (𝑁 ∈ ℕ → (𝑥 ∈ (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1))) |
31 | 30 | abbi2dv 2877 |
. . . 4
⊢ (𝑁 ∈ ℕ → (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}) |
32 | | df-rab 3073 |
. . . 4
⊢ {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)} |
33 | 31, 32 | eqtr4di 2796 |
. . 3
⊢ (𝑁 ∈ ℕ → (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}) |
34 | 33 | fveq2d 6778 |
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘(◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})) |
35 | | f1ocnv 6728 |
. . . . 5
⊢
(((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ◡((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁)) |
36 | | f1of1 6715 |
. . . . 5
⊢ (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ◡((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁)) |
37 | 16, 35, 36 | 3syl 18 |
. . . 4
⊢ (𝑁 ∈ ℕ → ◡((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁)) |
38 | | ovexd 7310 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(0..^𝑁) ∈
V) |
39 | 4, 24 | unitss 19902 |
. . . . 5
⊢ 𝑈 ⊆ (Base‘𝑌) |
40 | 39 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌)) |
41 | 24 | fvexi 6788 |
. . . . 5
⊢ 𝑈 ∈ V |
42 | 41 | a1i 11 |
. . . 4
⊢ (𝑁 ∈ ℕ → 𝑈 ∈ V) |
43 | | f1imaen2g 8801 |
. . . 4
⊢ (((◡((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈) |
44 | 37, 38, 40, 42, 43 | syl22anc 836 |
. . 3
⊢ (𝑁 ∈ ℕ → (◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈) |
45 | | hasheni 14062 |
. . 3
⊢ ((◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (♯‘(◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈)) |
46 | 44, 45 | syl 17 |
. 2
⊢ (𝑁 ∈ ℕ →
(♯‘(◡((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈)) |
47 | 1, 34, 46 | 3eqtr2rd 2785 |
1
⊢ (𝑁 ∈ ℕ →
(♯‘𝑈) =
(ϕ‘𝑁)) |