MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znunithash Structured version   Visualization version   GIF version

Theorem znunithash 21601
Description: The size of the unit group of ℤ/n. (Contributed by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
znchr.y 𝑌 = (ℤ/nℤ‘𝑁)
znunit.u 𝑈 = (Unit‘𝑌)
Assertion
Ref Expression
znunithash (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))

Proof of Theorem znunithash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfphi2 16808 . 2 (𝑁 ∈ ℕ → (ϕ‘𝑁) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
2 nnnn0 12531 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
3 znchr.y . . . . . . . . . 10 𝑌 = (ℤ/nℤ‘𝑁)
4 eqid 2735 . . . . . . . . . 10 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2735 . . . . . . . . . 10 ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁)))
6 eqid 2735 . . . . . . . . . 10 if(𝑁 = 0, ℤ, (0..^𝑁)) = if(𝑁 = 0, ℤ, (0..^𝑁))
73, 4, 5, 6znf1o 21588 . . . . . . . . 9 (𝑁 ∈ ℕ0 → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
82, 7syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌))
9 nnne0 12298 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
10 ifnefalse 4543 . . . . . . . . 9 (𝑁 ≠ 0 → if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁))
11 reseq2 5995 . . . . . . . . . . 11 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → ((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))) = ((ℤRHom‘𝑌) ↾ (0..^𝑁)))
1211f1oeq1d 6844 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌)))
13 f1oeq2 6838 . . . . . . . . . 10 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
1412, 13bitrd 279 . . . . . . . . 9 (if(𝑁 = 0, ℤ, (0..^𝑁)) = (0..^𝑁) → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
159, 10, 143syl 18 . . . . . . . 8 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ if(𝑁 = 0, ℤ, (0..^𝑁))):if(𝑁 = 0, ℤ, (0..^𝑁))–1-1-onto→(Base‘𝑌) ↔ ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌)))
168, 15mpbid 232 . . . . . . 7 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌))
17 f1ofn 6850 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁))
18 elpreima 7078 . . . . . . 7 (((ℤRHom‘𝑌) ↾ (0..^𝑁)) Fn (0..^𝑁) → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
1916, 17, 183syl 18 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈)))
20 fvres 6926 . . . . . . . . . 10 (𝑥 ∈ (0..^𝑁) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2120adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) = ((ℤRHom‘𝑌)‘𝑥))
2221eleq1d 2824 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ ((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈))
23 elfzoelz 13696 . . . . . . . . 9 (𝑥 ∈ (0..^𝑁) → 𝑥 ∈ ℤ)
24 znunit.u . . . . . . . . . 10 𝑈 = (Unit‘𝑌)
25 eqid 2735 . . . . . . . . . 10 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
263, 24, 25znunit 21600 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
272, 23, 26syl2an 596 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → (((ℤRHom‘𝑌)‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2822, 27bitrd 279 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ (0..^𝑁)) → ((((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈 ↔ (𝑥 gcd 𝑁) = 1))
2928pm5.32da 579 . . . . . 6 (𝑁 ∈ ℕ → ((𝑥 ∈ (0..^𝑁) ∧ (((ℤRHom‘𝑌) ↾ (0..^𝑁))‘𝑥) ∈ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3019, 29bitrd 279 . . . . 5 (𝑁 ∈ ℕ → (𝑥 ∈ (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ↔ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)))
3130eqabdv 2873 . . . 4 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)})
32 df-rab 3434 . . . 4 {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1} = {𝑥 ∣ (𝑥 ∈ (0..^𝑁) ∧ (𝑥 gcd 𝑁) = 1)}
3331, 32eqtr4di 2793 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) = {𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1})
3433fveq2d 6911 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘{𝑥 ∈ (0..^𝑁) ∣ (𝑥 gcd 𝑁) = 1}))
35 f1ocnv 6861 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(0..^𝑁)–1-1-onto→(Base‘𝑌) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁))
36 f1of1 6848 . . . . 5 (((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1-onto→(0..^𝑁) → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
3716, 35, 363syl 18 . . . 4 (𝑁 ∈ ℕ → ((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁))
38 ovexd 7466 . . . 4 (𝑁 ∈ ℕ → (0..^𝑁) ∈ V)
394, 24unitss 20393 . . . . 5 𝑈 ⊆ (Base‘𝑌)
4039a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ⊆ (Base‘𝑌))
4124fvexi 6921 . . . . 5 𝑈 ∈ V
4241a1i 11 . . . 4 (𝑁 ∈ ℕ → 𝑈 ∈ V)
43 f1imaen2g 9054 . . . 4 (((((ℤRHom‘𝑌) ↾ (0..^𝑁)):(Base‘𝑌)–1-1→(0..^𝑁) ∧ (0..^𝑁) ∈ V) ∧ (𝑈 ⊆ (Base‘𝑌) ∧ 𝑈 ∈ V)) → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
4437, 38, 40, 42, 43syl22anc 839 . . 3 (𝑁 ∈ ℕ → (((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈)
45 hasheni 14384 . . 3 ((((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈) ≈ 𝑈 → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
4644, 45syl 17 . 2 (𝑁 ∈ ℕ → (♯‘(((ℤRHom‘𝑌) ↾ (0..^𝑁)) “ 𝑈)) = (♯‘𝑈))
471, 34, 463eqtr2rd 2782 1 (𝑁 ∈ ℕ → (♯‘𝑈) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {cab 2712  wne 2938  {crab 3433  Vcvv 3478  wss 3963  ifcif 4531   class class class wbr 5148  ccnv 5688  cres 5691  cima 5692   Fn wfn 6558  1-1wf1 6560  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cen 8981  0cc0 11153  1c1 11154  cn 12264  0cn0 12524  cz 12611  ..^cfzo 13691  chash 14366   gcd cgcd 16528  ϕcphi 16798  Basecbs 17245  Unitcui 20372  ℤRHomczrh 21528  ℤ/nczn 21531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-ec 8746  df-qs 8750  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-phi 16800  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-0g 17488  df-imas 17555  df-qus 17556  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-nsg 19155  df-eqg 19156  df-ghm 19244  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-cring 20254  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-rhm 20489  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-lsp 20988  df-sra 21190  df-rgmod 21191  df-lidl 21236  df-rsp 21237  df-2idl 21278  df-cnfld 21383  df-zring 21476  df-zrh 21532  df-zn 21535
This theorem is referenced by:  dchrfi  27314  dchrsum2  27327  aks6d1c4  42106
  Copyright terms: Public domain W3C validator