MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovscpbl Structured version   Visualization version   GIF version

Theorem f1ovscpbl 17409
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f (𝜑𝐹:𝑉1-1-onto𝑋)
Assertion
Ref Expression
f1ovscpbl ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝑋)
2 f1of1 6784 . . . . 5 (𝐹:𝑉1-1-onto𝑋𝐹:𝑉1-1𝑋)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑉1-1𝑋)
43adantr 482 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐹:𝑉1-1𝑋)
5 simpr2 1196 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
6 simpr3 1197 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
7 f1fveq 7210 . . 3 ((𝐹:𝑉1-1𝑋 ∧ (𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
84, 5, 6, 7syl12anc 836 . 2 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
9 oveq2 7366 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
109fveq2d 6847 . 2 (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))
118, 10syl6bi 253 1 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  1-1wf1 6494  1-1-ontowf1o 6496  cfv 6497  (class class class)co 7358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-f1o 6504  df-fv 6505  df-ov 7361
This theorem is referenced by:  xpsvsca  17460
  Copyright terms: Public domain W3C validator