MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovscpbl Structured version   Visualization version   GIF version

Theorem f1ovscpbl 17154
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f (𝜑𝐹:𝑉1-1-onto𝑋)
Assertion
Ref Expression
f1ovscpbl ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝑋)
2 f1of1 6699 . . . . 5 (𝐹:𝑉1-1-onto𝑋𝐹:𝑉1-1𝑋)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑉1-1𝑋)
43adantr 480 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐹:𝑉1-1𝑋)
5 simpr2 1193 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
6 simpr3 1194 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
7 f1fveq 7116 . . 3 ((𝐹:𝑉1-1𝑋 ∧ (𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
84, 5, 6, 7syl12anc 833 . 2 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
9 oveq2 7263 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
109fveq2d 6760 . 2 (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))
118, 10syl6bi 252 1 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  1-1wf1 6415  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-f1o 6425  df-fv 6426  df-ov 7258
This theorem is referenced by:  xpsvsca  17205
  Copyright terms: Public domain W3C validator