| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ovscpbl | Structured version Visualization version GIF version | ||
| Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.) |
| Ref | Expression |
|---|---|
| f1ocpbl.f | ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) |
| Ref | Expression |
|---|---|
| f1ovscpbl | ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocpbl.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝑋) | |
| 2 | f1of1 6822 | . . . . 5 ⊢ (𝐹:𝑉–1-1-onto→𝑋 → 𝐹:𝑉–1-1→𝑋) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝑉–1-1→𝑋) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐹:𝑉–1-1→𝑋) |
| 5 | simpr2 1196 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐵 ∈ 𝑉) | |
| 6 | simpr3 1197 | . . 3 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → 𝐶 ∈ 𝑉) | |
| 7 | f1fveq 7260 | . . 3 ⊢ ((𝐹:𝑉–1-1→𝑋 ∧ (𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) | |
| 8 | 4, 5, 6, 7 | syl12anc 836 | . 2 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) ↔ 𝐵 = 𝐶)) |
| 9 | oveq2 7418 | . . 3 ⊢ (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) | |
| 10 | 9 | fveq2d 6885 | . 2 ⊢ (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))) |
| 11 | 8, 10 | biimtrdi 253 | 1 ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐹‘𝐵) = (𝐹‘𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 –1-1→wf1 6533 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-f1o 6543 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: xpsvsca 17596 |
| Copyright terms: Public domain | W3C validator |