MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ovscpbl Structured version   Visualization version   GIF version

Theorem f1ovscpbl 17468
Description: An injection is compatible with any operations on the base set. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypothesis
Ref Expression
f1ocpbl.f (𝜑𝐹:𝑉1-1-onto𝑋)
Assertion
Ref Expression
f1ovscpbl ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))

Proof of Theorem f1ovscpbl
StepHypRef Expression
1 f1ocpbl.f . . . . 5 (𝜑𝐹:𝑉1-1-onto𝑋)
2 f1of1 6829 . . . . 5 (𝐹:𝑉1-1-onto𝑋𝐹:𝑉1-1𝑋)
31, 2syl 17 . . . 4 (𝜑𝐹:𝑉1-1𝑋)
43adantr 481 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐹:𝑉1-1𝑋)
5 simpr2 1195 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐵𝑉)
6 simpr3 1196 . . 3 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → 𝐶𝑉)
7 f1fveq 7257 . . 3 ((𝐹:𝑉1-1𝑋 ∧ (𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
84, 5, 6, 7syl12anc 835 . 2 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) ↔ 𝐵 = 𝐶))
9 oveq2 7413 . . 3 (𝐵 = 𝐶 → (𝐴 + 𝐵) = (𝐴 + 𝐶))
109fveq2d 6892 . 2 (𝐵 = 𝐶 → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶)))
118, 10syl6bi 252 1 ((𝜑 ∧ (𝐴𝐾𝐵𝑉𝐶𝑉)) → ((𝐹𝐵) = (𝐹𝐶) → (𝐹‘(𝐴 + 𝐵)) = (𝐹‘(𝐴 + 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  1-1wf1 6537  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-f1o 6547  df-fv 6548  df-ov 7408
This theorem is referenced by:  xpsvsca  17519
  Copyright terms: Public domain W3C validator