MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Visualization version   GIF version

Theorem xpsvsca 16853
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
xpsvsca.x 𝑋 = (Base‘𝑅)
xpsvsca.y 𝑌 = (Base‘𝑆)
xpsvsca.k 𝐾 = (Base‘𝐺)
xpsvsca.m · = ( ·𝑠𝑅)
xpsvsca.n × = ( ·𝑠𝑆)
xpsvsca.p = ( ·𝑠𝑇)
xpsvsca.3 (𝜑𝐴𝐾)
xpsvsca.4 (𝜑𝐵𝑋)
xpsvsca.5 (𝜑𝐶𝑌)
xpsvsca.6 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
xpsvsca.7 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
Assertion
Ref Expression
xpsvsca (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)

Proof of Theorem xpsvsca
Dummy variables 𝑘 𝑎 𝑥 𝑦 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3 (𝜑𝐴𝐾)
2 df-ov 7162 . . . . 5 (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩)
3 xpsvsca.4 . . . . . 6 (𝜑𝐵𝑋)
4 xpsvsca.5 . . . . . 6 (𝜑𝐶𝑌)
5 eqid 2824 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
65xpsfval 16842 . . . . . 6 ((𝐵𝑋𝐶𝑌) → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
73, 4, 6syl2anc 586 . . . . 5 (𝜑 → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
82, 7syl5eqr 2873 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
93, 4opelxpd 5596 . . . . 5 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
105xpsff1o2 16845 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
11 f1of 6618 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
1210, 11ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1312ffvelrni 6853 . . . . 5 (⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
149, 13syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
158, 14eqeltrrd 2917 . . 3 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
16 xpssca.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
17 xpsvsca.x . . . . 5 𝑋 = (Base‘𝑅)
18 xpsvsca.y . . . . 5 𝑌 = (Base‘𝑆)
19 xpssca.1 . . . . 5 (𝜑𝑅𝑉)
20 xpssca.2 . . . . 5 (𝜑𝑆𝑊)
21 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
22 eqid 2824 . . . . 5 (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2316, 17, 18, 19, 20, 5, 21, 22xpsval 16846 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
2416, 17, 18, 19, 20, 5, 21, 22xpsrnbas 16847 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
25 f1ocnv 6630 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
2610, 25mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
27 f1ofo 6625 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2826, 27syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
29 ovexd 7194 . . . 4 (𝜑 → (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
3021fvexi 6687 . . . . . . 7 𝐺 ∈ V
3130a1i 11 . . . . . 6 (⊤ → 𝐺 ∈ V)
32 prex 5336 . . . . . . 7 {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V
3332a1i 11 . . . . . 6 (⊤ → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V)
3422, 31, 33prdssca 16732 . . . . 5 (⊤ → 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3534mptru 1543 . . . 4 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
36 xpsvsca.k . . . 4 𝐾 = (Base‘𝐺)
37 eqid 2824 . . . 4 ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
38 xpsvsca.p . . . 4 = ( ·𝑠𝑇)
3926f1ovscpbl 16802 . . . 4 ((𝜑 ∧ (𝑎𝐾𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑐))))
4023, 24, 28, 29, 35, 36, 37, 38, 39imasvscaval 16814 . . 3 ((𝜑𝐴𝐾 ∧ {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
411, 15, 40mpd3an23 1459 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
42 f1ocnvfv 7038 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
4310, 9, 42sylancr 589 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
448, 43mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩)
4544oveq2d 7175 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = (𝐴 𝐵, 𝐶⟩))
46 iftrue 4476 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
4746fveq2d 6677 . . . . . . . . . . 11 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑅))
48 xpsvsca.m . . . . . . . . . . 11 · = ( ·𝑠𝑅)
4947, 48syl6eqr 2877 . . . . . . . . . 10 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
50 eqidd 2825 . . . . . . . . . 10 (𝑘 = ∅ → 𝐴 = 𝐴)
51 iftrue 4476 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐵)
5249, 50, 51oveq123d 7180 . . . . . . . . 9 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 · 𝐵))
53 iftrue 4476 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 · 𝐵))
5452, 53eqtr4d 2862 . . . . . . . 8 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
55 iffalse 4479 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
5655fveq2d 6677 . . . . . . . . . . 11 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑆))
57 xpsvsca.n . . . . . . . . . . 11 × = ( ·𝑠𝑆)
5856, 57syl6eqr 2877 . . . . . . . . . 10 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
59 eqidd 2825 . . . . . . . . . 10 𝑘 = ∅ → 𝐴 = 𝐴)
60 iffalse 4479 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐶)
6158, 59, 60oveq123d 7180 . . . . . . . . 9 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 × 𝐶))
62 iffalse 4479 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 × 𝐶))
6361, 62eqtr4d 2862 . . . . . . . 8 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
6454, 63pm2.61i 184 . . . . . . 7 (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶))
6519adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
6620adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
67 simpr 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
68 fvprif 16837 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6965, 66, 67, 68syl3anc 1367 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7069fveq2d 6677 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)))
71 eqidd 2825 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → 𝐴 = 𝐴)
723adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑋)
734adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑌)
74 fvprif 16837 . . . . . . . . 9 ((𝐵𝑋𝐶𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7572, 73, 67, 74syl3anc 1367 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7670, 71, 75oveq123d 7180 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)))
77 xpsvsca.6 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
7877adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐵) ∈ 𝑋)
79 xpsvsca.7 . . . . . . . . 9 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
8079adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 × 𝐶) ∈ 𝑌)
81 fvprif 16837 . . . . . . . 8 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8278, 80, 67, 81syl3anc 1367 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8364, 76, 823eqtr4a 2885 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘))
8483mpteq2dva 5164 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
85 eqid 2824 . . . . . 6 (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
8630a1i 11 . . . . . 6 (𝜑𝐺 ∈ V)
87 2on 8114 . . . . . . 7 2o ∈ On
8887a1i 11 . . . . . 6 (𝜑 → 2o ∈ On)
89 fnpr2o 16833 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9019, 20, 89syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9115, 24eleqtrd 2918 . . . . . 6 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
9222, 85, 37, 36, 86, 88, 90, 1, 91prdsvscaval 16755 . . . . 5 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))))
93 fnpr2o 16833 . . . . . . 7 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
9477, 79, 93syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
95 dffn5 6727 . . . . . 6 ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9694, 95sylib 220 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9784, 92, 963eqtr4d 2869 . . . 4 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
9897fveq2d 6677 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}))
99 df-ov 7162 . . . . 5 ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
1005xpsfval 16842 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10177, 79, 100syl2anc 586 . . . . 5 (𝜑 → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10299, 101syl5eqr 2873 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10377, 79opelxpd 5596 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
104 f1ocnvfv 7038 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
10510, 103, 104sylancr 589 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
106102, 105mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10798, 106eqtrd 2859 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10841, 45, 1073eqtr3d 2867 1 (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1536  wtru 1537  wcel 2113  Vcvv 3497  c0 4294  ifcif 4470  {cpr 4572  cop 4576  cmpt 5149   × cxp 5556  ccnv 5557  ran crn 5559  Oncon0 6194   Fn wfn 6353  wf 6354  ontowfo 6356  1-1-ontowf1o 6357  cfv 6358  (class class class)co 7159  cmpo 7161  1oc1o 8098  2oc2o 8099  Basecbs 16486  Scalarcsca 16571   ·𝑠 cvsca 16572  Xscprds 16722   ×s cxps 16782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-inf 8910  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-prds 16724  df-imas 16784  df-xps 16786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator