Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Visualization version   GIF version

Theorem xpsvsca 16829
 Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
xpsvsca.x 𝑋 = (Base‘𝑅)
xpsvsca.y 𝑌 = (Base‘𝑆)
xpsvsca.k 𝐾 = (Base‘𝐺)
xpsvsca.m · = ( ·𝑠𝑅)
xpsvsca.n × = ( ·𝑠𝑆)
xpsvsca.p = ( ·𝑠𝑇)
xpsvsca.3 (𝜑𝐴𝐾)
xpsvsca.4 (𝜑𝐵𝑋)
xpsvsca.5 (𝜑𝐶𝑌)
xpsvsca.6 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
xpsvsca.7 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
Assertion
Ref Expression
xpsvsca (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)

Proof of Theorem xpsvsca
Dummy variables 𝑘 𝑎 𝑥 𝑦 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3 (𝜑𝐴𝐾)
2 df-ov 7136 . . . . 5 (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩)
3 xpsvsca.4 . . . . . 6 (𝜑𝐵𝑋)
4 xpsvsca.5 . . . . . 6 (𝜑𝐶𝑌)
5 eqid 2820 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
65xpsfval 16818 . . . . . 6 ((𝐵𝑋𝐶𝑌) → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
73, 4, 6syl2anc 586 . . . . 5 (𝜑 → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
82, 7syl5eqr 2869 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
93, 4opelxpd 5569 . . . . 5 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
105xpsff1o2 16821 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
11 f1of 6591 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
1210, 11ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1312ffvelrni 6826 . . . . 5 (⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
149, 13syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
158, 14eqeltrrd 2912 . . 3 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
16 xpssca.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
17 xpsvsca.x . . . . 5 𝑋 = (Base‘𝑅)
18 xpsvsca.y . . . . 5 𝑌 = (Base‘𝑆)
19 xpssca.1 . . . . 5 (𝜑𝑅𝑉)
20 xpssca.2 . . . . 5 (𝜑𝑆𝑊)
21 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
22 eqid 2820 . . . . 5 (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2316, 17, 18, 19, 20, 5, 21, 22xpsval 16822 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
2416, 17, 18, 19, 20, 5, 21, 22xpsrnbas 16823 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
25 f1ocnv 6603 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
2610, 25mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
27 f1ofo 6598 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2826, 27syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
29 ovexd 7168 . . . 4 (𝜑 → (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
3021fvexi 6660 . . . . . . 7 𝐺 ∈ V
3130a1i 11 . . . . . 6 (⊤ → 𝐺 ∈ V)
32 prex 5309 . . . . . . 7 {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V
3332a1i 11 . . . . . 6 (⊤ → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V)
3422, 31, 33prdssca 16708 . . . . 5 (⊤ → 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3534mptru 1544 . . . 4 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
36 xpsvsca.k . . . 4 𝐾 = (Base‘𝐺)
37 eqid 2820 . . . 4 ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
38 xpsvsca.p . . . 4 = ( ·𝑠𝑇)
3926f1ovscpbl 16778 . . . 4 ((𝜑 ∧ (𝑎𝐾𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑐))))
4023, 24, 28, 29, 35, 36, 37, 38, 39imasvscaval 16790 . . 3 ((𝜑𝐴𝐾 ∧ {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
411, 15, 40mpd3an23 1459 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
42 f1ocnvfv 7012 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
4310, 9, 42sylancr 589 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
448, 43mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩)
4544oveq2d 7149 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = (𝐴 𝐵, 𝐶⟩))
46 iftrue 4449 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
4746fveq2d 6650 . . . . . . . . . . 11 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑅))
48 xpsvsca.m . . . . . . . . . . 11 · = ( ·𝑠𝑅)
4947, 48syl6eqr 2873 . . . . . . . . . 10 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
50 eqidd 2821 . . . . . . . . . 10 (𝑘 = ∅ → 𝐴 = 𝐴)
51 iftrue 4449 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐵)
5249, 50, 51oveq123d 7154 . . . . . . . . 9 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 · 𝐵))
53 iftrue 4449 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 · 𝐵))
5452, 53eqtr4d 2858 . . . . . . . 8 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
55 iffalse 4452 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
5655fveq2d 6650 . . . . . . . . . . 11 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑆))
57 xpsvsca.n . . . . . . . . . . 11 × = ( ·𝑠𝑆)
5856, 57syl6eqr 2873 . . . . . . . . . 10 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
59 eqidd 2821 . . . . . . . . . 10 𝑘 = ∅ → 𝐴 = 𝐴)
60 iffalse 4452 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐶)
6158, 59, 60oveq123d 7154 . . . . . . . . 9 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 × 𝐶))
62 iffalse 4452 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 × 𝐶))
6361, 62eqtr4d 2858 . . . . . . . 8 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
6454, 63pm2.61i 184 . . . . . . 7 (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶))
6519adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
6620adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
67 simpr 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
68 fvprif 16813 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6965, 66, 67, 68syl3anc 1367 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7069fveq2d 6650 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)))
71 eqidd 2821 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → 𝐴 = 𝐴)
723adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑋)
734adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑌)
74 fvprif 16813 . . . . . . . . 9 ((𝐵𝑋𝐶𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7572, 73, 67, 74syl3anc 1367 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7670, 71, 75oveq123d 7154 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)))
77 xpsvsca.6 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
7877adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐵) ∈ 𝑋)
79 xpsvsca.7 . . . . . . . . 9 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
8079adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 × 𝐶) ∈ 𝑌)
81 fvprif 16813 . . . . . . . 8 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8278, 80, 67, 81syl3anc 1367 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8364, 76, 823eqtr4a 2881 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘))
8483mpteq2dva 5137 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
85 eqid 2820 . . . . . 6 (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
8630a1i 11 . . . . . 6 (𝜑𝐺 ∈ V)
87 2on 8089 . . . . . . 7 2o ∈ On
8887a1i 11 . . . . . 6 (𝜑 → 2o ∈ On)
89 fnpr2o 16809 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9019, 20, 89syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9115, 24eleqtrd 2913 . . . . . 6 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
9222, 85, 37, 36, 86, 88, 90, 1, 91prdsvscaval 16731 . . . . 5 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))))
93 fnpr2o 16809 . . . . . . 7 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
9477, 79, 93syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
95 dffn5 6700 . . . . . 6 ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9694, 95sylib 220 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9784, 92, 963eqtr4d 2865 . . . 4 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
9897fveq2d 6650 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}))
99 df-ov 7136 . . . . 5 ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
1005xpsfval 16818 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10177, 79, 100syl2anc 586 . . . . 5 (𝜑 → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10299, 101syl5eqr 2869 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10377, 79opelxpd 5569 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
104 f1ocnvfv 7012 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
10510, 103, 104sylancr 589 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
106102, 105mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10798, 106eqtrd 2855 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10841, 45, 1073eqtr3d 2863 1 (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   = wceq 1537  ⊤wtru 1538   ∈ wcel 2114  Vcvv 3473  ∅c0 4269  ifcif 4443  {cpr 4545  ⟨cop 4549   ↦ cmpt 5122   × cxp 5529  ◡ccnv 5530  ran crn 5532  Oncon0 6167   Fn wfn 6326  ⟶wf 6327  –onto→wfo 6329  –1-1-onto→wf1o 6330  ‘cfv 6331  (class class class)co 7133   ∈ cmpo 7135  1oc1o 8073  2oc2o 8074  Basecbs 16462  Scalarcsca 16547   ·𝑠 cvsca 16548  Xscprds 16698   ×s cxps 16758 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-om 7559  df-1st 7667  df-2nd 7668  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-2o 8081  df-oadd 8084  df-er 8267  df-map 8386  df-ixp 8440  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-3 11680  df-4 11681  df-5 11682  df-6 11683  df-7 11684  df-8 11685  df-9 11686  df-n0 11877  df-z 11961  df-dec 12078  df-uz 12223  df-fz 12877  df-struct 16464  df-ndx 16465  df-slot 16466  df-base 16468  df-plusg 16557  df-mulr 16558  df-sca 16560  df-vsca 16561  df-ip 16562  df-tset 16563  df-ple 16564  df-ds 16566  df-hom 16568  df-cco 16569  df-prds 16700  df-imas 16760  df-xps 16762 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator