MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Visualization version   GIF version

Theorem xpsvsca 17288
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
xpsvsca.x 𝑋 = (Base‘𝑅)
xpsvsca.y 𝑌 = (Base‘𝑆)
xpsvsca.k 𝐾 = (Base‘𝐺)
xpsvsca.m · = ( ·𝑠𝑅)
xpsvsca.n × = ( ·𝑠𝑆)
xpsvsca.p = ( ·𝑠𝑇)
xpsvsca.3 (𝜑𝐴𝐾)
xpsvsca.4 (𝜑𝐵𝑋)
xpsvsca.5 (𝜑𝐶𝑌)
xpsvsca.6 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
xpsvsca.7 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
Assertion
Ref Expression
xpsvsca (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)

Proof of Theorem xpsvsca
Dummy variables 𝑘 𝑎 𝑥 𝑦 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3 (𝜑𝐴𝐾)
2 df-ov 7278 . . . . 5 (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩)
3 xpsvsca.4 . . . . . 6 (𝜑𝐵𝑋)
4 xpsvsca.5 . . . . . 6 (𝜑𝐶𝑌)
5 eqid 2738 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
65xpsfval 17277 . . . . . 6 ((𝐵𝑋𝐶𝑌) → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
73, 4, 6syl2anc 584 . . . . 5 (𝜑 → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
82, 7eqtr3id 2792 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
93, 4opelxpd 5627 . . . . 5 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
105xpsff1o2 17280 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
11 f1of 6716 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
1210, 11ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1312ffvelrni 6960 . . . . 5 (⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
149, 13syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
158, 14eqeltrrd 2840 . . 3 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
16 xpssca.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
17 xpsvsca.x . . . . 5 𝑋 = (Base‘𝑅)
18 xpsvsca.y . . . . 5 𝑌 = (Base‘𝑆)
19 xpssca.1 . . . . 5 (𝜑𝑅𝑉)
20 xpssca.2 . . . . 5 (𝜑𝑆𝑊)
21 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
22 eqid 2738 . . . . 5 (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2316, 17, 18, 19, 20, 5, 21, 22xpsval 17281 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
2416, 17, 18, 19, 20, 5, 21, 22xpsrnbas 17282 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
25 f1ocnv 6728 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
2610, 25mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
27 f1ofo 6723 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2826, 27syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
29 ovexd 7310 . . . 4 (𝜑 → (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
3021fvexi 6788 . . . . . . 7 𝐺 ∈ V
3130a1i 11 . . . . . 6 (⊤ → 𝐺 ∈ V)
32 prex 5355 . . . . . . 7 {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V
3332a1i 11 . . . . . 6 (⊤ → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V)
3422, 31, 33prdssca 17167 . . . . 5 (⊤ → 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3534mptru 1546 . . . 4 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
36 xpsvsca.k . . . 4 𝐾 = (Base‘𝐺)
37 eqid 2738 . . . 4 ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
38 xpsvsca.p . . . 4 = ( ·𝑠𝑇)
3926f1ovscpbl 17237 . . . 4 ((𝜑 ∧ (𝑎𝐾𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑐))))
4023, 24, 28, 29, 35, 36, 37, 38, 39imasvscaval 17249 . . 3 ((𝜑𝐴𝐾 ∧ {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
411, 15, 40mpd3an23 1462 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
42 f1ocnvfv 7150 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
4310, 9, 42sylancr 587 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
448, 43mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩)
4544oveq2d 7291 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = (𝐴 𝐵, 𝐶⟩))
46 iftrue 4465 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
4746fveq2d 6778 . . . . . . . . . . 11 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑅))
48 xpsvsca.m . . . . . . . . . . 11 · = ( ·𝑠𝑅)
4947, 48eqtr4di 2796 . . . . . . . . . 10 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
50 eqidd 2739 . . . . . . . . . 10 (𝑘 = ∅ → 𝐴 = 𝐴)
51 iftrue 4465 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐵)
5249, 50, 51oveq123d 7296 . . . . . . . . 9 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 · 𝐵))
53 iftrue 4465 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 · 𝐵))
5452, 53eqtr4d 2781 . . . . . . . 8 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
55 iffalse 4468 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
5655fveq2d 6778 . . . . . . . . . . 11 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑆))
57 xpsvsca.n . . . . . . . . . . 11 × = ( ·𝑠𝑆)
5856, 57eqtr4di 2796 . . . . . . . . . 10 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
59 eqidd 2739 . . . . . . . . . 10 𝑘 = ∅ → 𝐴 = 𝐴)
60 iffalse 4468 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐶)
6158, 59, 60oveq123d 7296 . . . . . . . . 9 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 × 𝐶))
62 iffalse 4468 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 × 𝐶))
6361, 62eqtr4d 2781 . . . . . . . 8 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
6454, 63pm2.61i 182 . . . . . . 7 (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶))
6519adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
6620adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
67 simpr 485 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
68 fvprif 17272 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6965, 66, 67, 68syl3anc 1370 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7069fveq2d 6778 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)))
71 eqidd 2739 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → 𝐴 = 𝐴)
723adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑋)
734adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑌)
74 fvprif 17272 . . . . . . . . 9 ((𝐵𝑋𝐶𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7572, 73, 67, 74syl3anc 1370 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7670, 71, 75oveq123d 7296 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)))
77 xpsvsca.6 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
7877adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐵) ∈ 𝑋)
79 xpsvsca.7 . . . . . . . . 9 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
8079adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 × 𝐶) ∈ 𝑌)
81 fvprif 17272 . . . . . . . 8 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8278, 80, 67, 81syl3anc 1370 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8364, 76, 823eqtr4a 2804 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘))
8483mpteq2dva 5174 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
85 eqid 2738 . . . . . 6 (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
8630a1i 11 . . . . . 6 (𝜑𝐺 ∈ V)
87 2on 8311 . . . . . . 7 2o ∈ On
8887a1i 11 . . . . . 6 (𝜑 → 2o ∈ On)
89 fnpr2o 17268 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9019, 20, 89syl2anc 584 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9115, 24eleqtrd 2841 . . . . . 6 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
9222, 85, 37, 36, 86, 88, 90, 1, 91prdsvscaval 17190 . . . . 5 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))))
93 fnpr2o 17268 . . . . . . 7 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
9477, 79, 93syl2anc 584 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
95 dffn5 6828 . . . . . 6 ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9694, 95sylib 217 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9784, 92, 963eqtr4d 2788 . . . 4 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
9897fveq2d 6778 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}))
99 df-ov 7278 . . . . 5 ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
1005xpsfval 17277 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10177, 79, 100syl2anc 584 . . . . 5 (𝜑 → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10299, 101eqtr3id 2792 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10377, 79opelxpd 5627 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
104 f1ocnvfv 7150 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
10510, 103, 104sylancr 587 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
106102, 105mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10798, 106eqtrd 2778 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10841, 45, 1073eqtr3d 2786 1 (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wtru 1540  wcel 2106  Vcvv 3432  c0 4256  ifcif 4459  {cpr 4563  cop 4567  cmpt 5157   × cxp 5587  ccnv 5588  ran crn 5590  Oncon0 6266   Fn wfn 6428  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  cmpo 7277  1oc1o 8290  2oc2o 8291  Basecbs 16912  Scalarcsca 16965   ·𝑠 cvsca 16966  Xscprds 17156   ×s cxps 17217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158  df-imas 17219  df-xps 17221
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator