MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsvsca Structured version   Visualization version   GIF version

Theorem xpsvsca 16842
Description: Value of the scalar multiplication function in a binary structure product. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpssca.t 𝑇 = (𝑅 ×s 𝑆)
xpssca.g 𝐺 = (Scalar‘𝑅)
xpssca.1 (𝜑𝑅𝑉)
xpssca.2 (𝜑𝑆𝑊)
xpsvsca.x 𝑋 = (Base‘𝑅)
xpsvsca.y 𝑌 = (Base‘𝑆)
xpsvsca.k 𝐾 = (Base‘𝐺)
xpsvsca.m · = ( ·𝑠𝑅)
xpsvsca.n × = ( ·𝑠𝑆)
xpsvsca.p = ( ·𝑠𝑇)
xpsvsca.3 (𝜑𝐴𝐾)
xpsvsca.4 (𝜑𝐵𝑋)
xpsvsca.5 (𝜑𝐶𝑌)
xpsvsca.6 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
xpsvsca.7 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
Assertion
Ref Expression
xpsvsca (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)

Proof of Theorem xpsvsca
Dummy variables 𝑘 𝑎 𝑥 𝑦 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsvsca.3 . . 3 (𝜑𝐴𝐾)
2 df-ov 7138 . . . . 5 (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩)
3 xpsvsca.4 . . . . . 6 (𝜑𝐵𝑋)
4 xpsvsca.5 . . . . . 6 (𝜑𝐶𝑌)
5 eqid 2798 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
65xpsfval 16831 . . . . . 6 ((𝐵𝑋𝐶𝑌) → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
73, 4, 6syl2anc 587 . . . . 5 (𝜑 → (𝐵(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})𝐶) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
82, 7syl5eqr 2847 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})
93, 4opelxpd 5557 . . . . 5 (𝜑 → ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌))
105xpsff1o2 16834 . . . . . . 7 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
11 f1of 6590 . . . . . . 7 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
1210, 11ax-mp 5 . . . . . 6 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)⟶ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1312ffvelrni 6827 . . . . 5 (⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
149, 13syl 17 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
158, 14eqeltrrd 2891 . . 3 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
16 xpssca.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
17 xpsvsca.x . . . . 5 𝑋 = (Base‘𝑅)
18 xpsvsca.y . . . . 5 𝑌 = (Base‘𝑆)
19 xpssca.1 . . . . 5 (𝜑𝑅𝑉)
20 xpssca.2 . . . . 5 (𝜑𝑆𝑊)
21 xpssca.g . . . . 5 𝐺 = (Scalar‘𝑅)
22 eqid 2798 . . . . 5 (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
2316, 17, 18, 19, 20, 5, 21, 22xpsval 16835 . . . 4 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
2416, 17, 18, 19, 20, 5, 21, 22xpsrnbas 16836 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
25 f1ocnv 6602 . . . . . 6 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
2610, 25mp1i 13 . . . . 5 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
27 f1ofo 6597 . . . . 5 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
2826, 27syl 17 . . . 4 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→(𝑋 × 𝑌))
29 ovexd 7170 . . . 4 (𝜑 → (𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
3021fvexi 6659 . . . . . . 7 𝐺 ∈ V
3130a1i 11 . . . . . 6 (⊤ → 𝐺 ∈ V)
32 prex 5298 . . . . . . 7 {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V
3332a1i 11 . . . . . 6 (⊤ → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} ∈ V)
3422, 31, 33prdssca 16721 . . . . 5 (⊤ → 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
3534mptru 1545 . . . 4 𝐺 = (Scalar‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
36 xpsvsca.k . . . 4 𝐾 = (Base‘𝐺)
37 eqid 2798 . . . 4 ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = ( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
38 xpsvsca.p . . . 4 = ( ·𝑠𝑇)
3926f1ovscpbl 16791 . . . 4 ((𝜑 ∧ (𝑎𝐾𝑏 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ 𝑐 ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑏) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘𝑐) → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑏)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝑎( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))𝑐))))
4023, 24, 28, 29, 35, 36, 37, 38, 39imasvscaval 16803 . . 3 ((𝜑𝐴𝐾 ∧ {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
411, 15, 40mpd3an23 1460 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})))
42 f1ocnvfv 7013 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨𝐵, 𝐶⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
4310, 9, 42sylancr 590 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨𝐵, 𝐶⟩) = {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩))
448, 43mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = ⟨𝐵, 𝐶⟩)
4544oveq2d 7151 . 2 (𝜑 → (𝐴 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = (𝐴 𝐵, 𝐶⟩))
46 iftrue 4431 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
4746fveq2d 6649 . . . . . . . . . . 11 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑅))
48 xpsvsca.m . . . . . . . . . . 11 · = ( ·𝑠𝑅)
4947, 48eqtr4di 2851 . . . . . . . . . 10 (𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
50 eqidd 2799 . . . . . . . . . 10 (𝑘 = ∅ → 𝐴 = 𝐴)
51 iftrue 4431 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐵)
5249, 50, 51oveq123d 7156 . . . . . . . . 9 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 · 𝐵))
53 iftrue 4431 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 · 𝐵))
5452, 53eqtr4d 2836 . . . . . . . 8 (𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
55 iffalse 4434 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
5655fveq2d 6649 . . . . . . . . . . 11 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = ( ·𝑠𝑆))
57 xpsvsca.n . . . . . . . . . . 11 × = ( ·𝑠𝑆)
5856, 57eqtr4di 2851 . . . . . . . . . 10 𝑘 = ∅ → ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
59 eqidd 2799 . . . . . . . . . 10 𝑘 = ∅ → 𝐴 = 𝐴)
60 iffalse 4434 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐵, 𝐶) = 𝐶)
6158, 59, 60oveq123d 7156 . . . . . . . . 9 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = (𝐴 × 𝐶))
62 iffalse 4434 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)) = (𝐴 × 𝐶))
6361, 62eqtr4d 2836 . . . . . . . 8 𝑘 = ∅ → (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
6454, 63pm2.61i 185 . . . . . . 7 (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶))
6519adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
6620adantr 484 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
67 simpr 488 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
68 fvprif 16826 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6965, 66, 67, 68syl3anc 1368 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7069fveq2d 6649 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = ( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆)))
71 eqidd 2799 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → 𝐴 = 𝐴)
723adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑋)
734adantr 484 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑌)
74 fvprif 16826 . . . . . . . . 9 ((𝐵𝑋𝐶𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7572, 73, 67, 74syl3anc 1368 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘) = if(𝑘 = ∅, 𝐵, 𝐶))
7670, 71, 75oveq123d 7156 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = (𝐴( ·𝑠 ‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐵, 𝐶)))
77 xpsvsca.6 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐵) ∈ 𝑋)
7877adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐵) ∈ 𝑋)
79 xpsvsca.7 . . . . . . . . 9 (𝜑 → (𝐴 × 𝐶) ∈ 𝑌)
8079adantr 484 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 × 𝐶) ∈ 𝑌)
81 fvprif 16826 . . . . . . . 8 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8278, 80, 67, 81syl3anc 1368 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐵), (𝐴 × 𝐶)))
8364, 76, 823eqtr4a 2859 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘))
8483mpteq2dva 5125 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
85 eqid 2798 . . . . . 6 (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}))
8630a1i 11 . . . . . 6 (𝜑𝐺 ∈ V)
87 2on 8094 . . . . . . 7 2o ∈ On
8887a1i 11 . . . . . 6 (𝜑 → 2o ∈ On)
89 fnpr2o 16822 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9019, 20, 89syl2anc 587 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
9115, 24eleqtrd 2892 . . . . . 6 (𝜑 → {⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩} ∈ (Base‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
9222, 85, 37, 36, 86, 88, 90, 1, 91prdsvscaval 16744 . . . . 5 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = (𝑘 ∈ 2o ↦ (𝐴( ·𝑠 ‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}‘𝑘))))
93 fnpr2o 16822 . . . . . . 7 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
9477, 79, 93syl2anc 587 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o)
95 dffn5 6699 . . . . . 6 ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9694, 95sylib 221 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}‘𝑘)))
9784, 92, 963eqtr4d 2843 . . . 4 (𝜑 → (𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩}) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
9897fveq2d 6649 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}))
99 df-ov 7138 . . . . 5 ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
1005xpsfval 16831 . . . . . 6 (((𝐴 · 𝐵) ∈ 𝑋 ∧ (𝐴 × 𝐶) ∈ 𝑌) → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10177, 79, 100syl2anc 587 . . . . 5 (𝜑 → ((𝐴 · 𝐵)(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})(𝐴 × 𝐶)) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10299, 101syl5eqr 2847 . . . 4 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩})
10377, 79opelxpd 5557 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌))
104 f1ocnvfv 7013 . . . . 5 (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ∧ ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩ ∈ (𝑋 × 𝑌)) → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
10510, 103, 104sylancr 590 . . . 4 (𝜑 → (((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩) = {⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩} → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩))
106102, 105mpd 15 . . 3 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘{⟨∅, (𝐴 · 𝐵)⟩, ⟨1o, (𝐴 × 𝐶)⟩}) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10798, 106eqtrd 2833 . 2 (𝜑 → ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})‘(𝐴( ·𝑠 ‘(𝐺Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})){⟨∅, 𝐵⟩, ⟨1o, 𝐶⟩})) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
10841, 45, 1073eqtr3d 2841 1 (𝜑 → (𝐴 𝐵, 𝐶⟩) = ⟨(𝐴 · 𝐵), (𝐴 × 𝐶)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wtru 1539  wcel 2111  Vcvv 3441  c0 4243  ifcif 4425  {cpr 4527  cop 4531  cmpt 5110   × cxp 5517  ccnv 5518  ran crn 5520  Oncon0 6159   Fn wfn 6319  wf 6320  ontowfo 6322  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cmpo 7137  1oc1o 8078  2oc2o 8079  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  Xscprds 16711   ×s cxps 16771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-imas 16773  df-xps 16775
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator