Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafv2elrn Structured version   Visualization version   GIF version

Theorem fafv2elrn 44158
 Description: An alternate function value belongs to the codomain of the function, analogous to ffvelrn 6840. (Contributed by AV, 2-Sep-2022.)
Assertion
Ref Expression
fafv2elrn ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ 𝐵)

Proof of Theorem fafv2elrn
StepHypRef Expression
1 ffn 6498 . . 3 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
2 fnafv2elrn 44157 . . 3 ((𝐹 Fn 𝐴𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
31, 2sylan 583 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ ran 𝐹)
4 frn 6504 . . . 4 (𝐹:𝐴𝐵 → ran 𝐹𝐵)
54sseld 3891 . . 3 (𝐹:𝐴𝐵 → ((𝐹''''𝐶) ∈ ran 𝐹 → (𝐹''''𝐶) ∈ 𝐵))
65adantr 484 . 2 ((𝐹:𝐴𝐵𝐶𝐴) → ((𝐹''''𝐶) ∈ ran 𝐹 → (𝐹''''𝐶) ∈ 𝐵))
73, 6mpd 15 1 ((𝐹:𝐴𝐵𝐶𝐴) → (𝐹''''𝐶) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2111  ran crn 5525   Fn wfn 6330  ⟶wf 6331  ''''cafv2 44132 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-dfat 44043  df-afv2 44133 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator