Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaslmhm Structured version   Visualization version   GIF version

Theorem imaslmhm 33301
Description: Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imaslmhm.1 𝐷 = (Scalar‘𝑊)
imaslmhm.2 𝐾 = (Base‘𝐷)
imaslmhm.3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
imaslmhm.w (𝜑𝑊 ∈ LMod)
imaslmhm.4 × = ( ·𝑠𝑊)
Assertion
Ref Expression
imaslmhm (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑏,𝑘,𝑝,𝑞   × ,𝑏,𝑘,𝑝,𝑞   𝐵,𝑎,𝑏,𝑘,𝑝,𝑞   𝐹,𝑎,𝑏,𝑘,𝑝,𝑞   𝐾,𝑎,𝑏,𝑘   𝑊,𝑎,𝑏,𝑘,𝑝,𝑞   𝜑,𝑎,𝑞,𝑏,𝑘,𝑝
Allowed substitution hints:   𝐶(𝑘,𝑞,𝑝,𝑎,𝑏)   𝐷(𝑘,𝑞,𝑝,𝑎,𝑏)   + (𝑎)   × (𝑎)   𝐾(𝑞,𝑝)

Proof of Theorem imaslmhm
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . 3 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . 3 𝐵 = (Base‘𝑊)
3 imaslmhm.2 . . . 4 𝐾 = (Base‘𝐷)
4 imaslmhm.1 . . . . 5 𝐷 = (Scalar‘𝑊)
54fveq2i 6843 . . . 4 (Base‘𝐷) = (Base‘(Scalar‘𝑊))
63, 5eqtri 2752 . . 3 𝐾 = (Base‘(Scalar‘𝑊))
7 imasmhm.1 . . 3 + = (+g𝑊)
8 imaslmhm.4 . . 3 × = ( ·𝑠𝑊)
9 eqid 2729 . . 3 (0g𝑊) = (0g𝑊)
10 imasmhm.f . . . 4 (𝜑𝐹:𝐵𝐶)
11 fimadmfo 6763 . . . 4 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
1210, 11syl 17 . . 3 (𝜑𝐹:𝐵onto→(𝐹𝐵))
13 imasmhm.2 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
14 imaslmhm.3 . . 3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
15 imaslmhm.w . . 3 (𝜑𝑊 ∈ LMod)
161, 2, 6, 7, 8, 9, 12, 13, 14, 15imaslmod 33297 . 2 (𝜑 → (𝐹s 𝑊) ∈ LMod)
17 eqid 2729 . . 3 ( ·𝑠 ‘(𝐹s 𝑊)) = ( ·𝑠 ‘(𝐹s 𝑊))
18 eqid 2729 . . 3 (Scalar‘(𝐹s 𝑊)) = (Scalar‘(𝐹s 𝑊))
192a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑊))
201, 19, 12, 15, 4imassca 17458 . . . 4 (𝜑𝐷 = (Scalar‘(𝐹s 𝑊)))
2120eqcomd 2735 . . 3 (𝜑 → (Scalar‘(𝐹s 𝑊)) = 𝐷)
2215lmodgrpd 20752 . . . . 5 (𝜑𝑊 ∈ Grp)
232, 10, 7, 13, 22imasghm 33299 . . . 4 (𝜑 → ((𝐹s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊))))
2423simprd 495 . . 3 (𝜑𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊)))
251, 19, 12, 15, 4, 3, 8, 17, 14imasvscaval 17477 . . . . 5 ((𝜑𝑢𝐾𝑥𝐵) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
26253expb 1120 . . . 4 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
2726eqcomd 2735 . . 3 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝐹‘(𝑢 × 𝑥)) = (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)))
282, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27islmhmd 20922 . 2 (𝜑𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊)))
2916, 28jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cima 5634  wf 6495  ontowfo 6497  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  Scalarcsca 17199   ·𝑠 cvsca 17200  0gc0g 17378  s cimas 17443  Grpcgrp 18841   GrpHom cghm 19120  LModclmod 20742   LMHom clmhm 20902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-ghm 19121  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20744  df-lmhm 20905
This theorem is referenced by:  r1plmhm  33548
  Copyright terms: Public domain W3C validator