| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imaslmhm | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| imasmhm.b | ⊢ 𝐵 = (Base‘𝑊) |
| imasmhm.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| imasmhm.1 | ⊢ + = (+g‘𝑊) |
| imasmhm.2 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imaslmhm.1 | ⊢ 𝐷 = (Scalar‘𝑊) |
| imaslmhm.2 | ⊢ 𝐾 = (Base‘𝐷) |
| imaslmhm.3 | ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏)))) |
| imaslmhm.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
| imaslmhm.4 | ⊢ × = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| imaslmhm | ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹 “s 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (𝜑 → (𝐹 “s 𝑊) = (𝐹 “s 𝑊)) | |
| 2 | imasmhm.b | . . 3 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | imaslmhm.2 | . . . 4 ⊢ 𝐾 = (Base‘𝐷) | |
| 4 | imaslmhm.1 | . . . . 5 ⊢ 𝐷 = (Scalar‘𝑊) | |
| 5 | 4 | fveq2i 6825 | . . . 4 ⊢ (Base‘𝐷) = (Base‘(Scalar‘𝑊)) |
| 6 | 3, 5 | eqtri 2752 | . . 3 ⊢ 𝐾 = (Base‘(Scalar‘𝑊)) |
| 7 | imasmhm.1 | . . 3 ⊢ + = (+g‘𝑊) | |
| 8 | imaslmhm.4 | . . 3 ⊢ × = ( ·𝑠 ‘𝑊) | |
| 9 | eqid 2729 | . . 3 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 10 | imasmhm.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 11 | fimadmfo 6745 | . . . 4 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) |
| 13 | imasmhm.2 | . . 3 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 14 | imaslmhm.3 | . . 3 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐾 ∧ 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵)) → ((𝐹‘𝑎) = (𝐹‘𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏)))) | |
| 15 | imaslmhm.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
| 16 | 1, 2, 6, 7, 8, 9, 12, 13, 14, 15 | imaslmod 33290 | . 2 ⊢ (𝜑 → (𝐹 “s 𝑊) ∈ LMod) |
| 17 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘(𝐹 “s 𝑊)) = ( ·𝑠 ‘(𝐹 “s 𝑊)) | |
| 18 | eqid 2729 | . . 3 ⊢ (Scalar‘(𝐹 “s 𝑊)) = (Scalar‘(𝐹 “s 𝑊)) | |
| 19 | 2 | a1i 11 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| 20 | 1, 19, 12, 15, 4 | imassca 17423 | . . . 4 ⊢ (𝜑 → 𝐷 = (Scalar‘(𝐹 “s 𝑊))) |
| 21 | 20 | eqcomd 2735 | . . 3 ⊢ (𝜑 → (Scalar‘(𝐹 “s 𝑊)) = 𝐷) |
| 22 | 15 | lmodgrpd 20773 | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Grp) |
| 23 | 2, 10, 7, 13, 22 | imasghm 33292 | . . . 4 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹 “s 𝑊)))) |
| 24 | 23 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝑊 GrpHom (𝐹 “s 𝑊))) |
| 25 | 1, 19, 12, 15, 4, 3, 8, 17, 14 | imasvscaval 17442 | . . . . 5 ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵) → (𝑢( ·𝑠 ‘(𝐹 “s 𝑊))(𝐹‘𝑥)) = (𝐹‘(𝑢 × 𝑥))) |
| 26 | 25 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵)) → (𝑢( ·𝑠 ‘(𝐹 “s 𝑊))(𝐹‘𝑥)) = (𝐹‘(𝑢 × 𝑥))) |
| 27 | 26 | eqcomd 2735 | . . 3 ⊢ ((𝜑 ∧ (𝑢 ∈ 𝐾 ∧ 𝑥 ∈ 𝐵)) → (𝐹‘(𝑢 × 𝑥)) = (𝑢( ·𝑠 ‘(𝐹 “s 𝑊))(𝐹‘𝑥))) |
| 28 | 2, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27 | islmhmd 20943 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑊 LMHom (𝐹 “s 𝑊))) |
| 29 | 16, 28 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹 “s 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 “ cima 5622 ⟶wf 6478 –onto→wfo 6480 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 “s cimas 17408 Grpcgrp 18812 GrpHom cghm 19091 LModclmod 20763 LMHom clmhm 20923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-0g 17345 df-imas 17412 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-minusg 18816 df-ghm 19092 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20765 df-lmhm 20926 |
| This theorem is referenced by: r1plmhm 33542 |
| Copyright terms: Public domain | W3C validator |