Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaslmhm Structured version   Visualization version   GIF version

Theorem imaslmhm 33294
Description: Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imaslmhm.1 𝐷 = (Scalar‘𝑊)
imaslmhm.2 𝐾 = (Base‘𝐷)
imaslmhm.3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
imaslmhm.w (𝜑𝑊 ∈ LMod)
imaslmhm.4 × = ( ·𝑠𝑊)
Assertion
Ref Expression
imaslmhm (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑏,𝑘,𝑝,𝑞   × ,𝑏,𝑘,𝑝,𝑞   𝐵,𝑎,𝑏,𝑘,𝑝,𝑞   𝐹,𝑎,𝑏,𝑘,𝑝,𝑞   𝐾,𝑎,𝑏,𝑘   𝑊,𝑎,𝑏,𝑘,𝑝,𝑞   𝜑,𝑎,𝑞,𝑏,𝑘,𝑝
Allowed substitution hints:   𝐶(𝑘,𝑞,𝑝,𝑎,𝑏)   𝐷(𝑘,𝑞,𝑝,𝑎,𝑏)   + (𝑎)   × (𝑎)   𝐾(𝑞,𝑝)

Proof of Theorem imaslmhm
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . 3 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . 3 𝐵 = (Base‘𝑊)
3 imaslmhm.2 . . . 4 𝐾 = (Base‘𝐷)
4 imaslmhm.1 . . . . 5 𝐷 = (Scalar‘𝑊)
54fveq2i 6825 . . . 4 (Base‘𝐷) = (Base‘(Scalar‘𝑊))
63, 5eqtri 2752 . . 3 𝐾 = (Base‘(Scalar‘𝑊))
7 imasmhm.1 . . 3 + = (+g𝑊)
8 imaslmhm.4 . . 3 × = ( ·𝑠𝑊)
9 eqid 2729 . . 3 (0g𝑊) = (0g𝑊)
10 imasmhm.f . . . 4 (𝜑𝐹:𝐵𝐶)
11 fimadmfo 6745 . . . 4 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
1210, 11syl 17 . . 3 (𝜑𝐹:𝐵onto→(𝐹𝐵))
13 imasmhm.2 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
14 imaslmhm.3 . . 3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
15 imaslmhm.w . . 3 (𝜑𝑊 ∈ LMod)
161, 2, 6, 7, 8, 9, 12, 13, 14, 15imaslmod 33290 . 2 (𝜑 → (𝐹s 𝑊) ∈ LMod)
17 eqid 2729 . . 3 ( ·𝑠 ‘(𝐹s 𝑊)) = ( ·𝑠 ‘(𝐹s 𝑊))
18 eqid 2729 . . 3 (Scalar‘(𝐹s 𝑊)) = (Scalar‘(𝐹s 𝑊))
192a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑊))
201, 19, 12, 15, 4imassca 17423 . . . 4 (𝜑𝐷 = (Scalar‘(𝐹s 𝑊)))
2120eqcomd 2735 . . 3 (𝜑 → (Scalar‘(𝐹s 𝑊)) = 𝐷)
2215lmodgrpd 20773 . . . . 5 (𝜑𝑊 ∈ Grp)
232, 10, 7, 13, 22imasghm 33292 . . . 4 (𝜑 → ((𝐹s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊))))
2423simprd 495 . . 3 (𝜑𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊)))
251, 19, 12, 15, 4, 3, 8, 17, 14imasvscaval 17442 . . . . 5 ((𝜑𝑢𝐾𝑥𝐵) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
26253expb 1120 . . . 4 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
2726eqcomd 2735 . . 3 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝐹‘(𝑢 × 𝑥)) = (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)))
282, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27islmhmd 20943 . 2 (𝜑𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊)))
2916, 28jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cima 5622  wf 6478  ontowfo 6480  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Scalarcsca 17164   ·𝑠 cvsca 17165  0gc0g 17343  s cimas 17408  Grpcgrp 18812   GrpHom cghm 19091  LModclmod 20763   LMHom clmhm 20923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-ghm 19092  df-mgp 20026  df-ur 20067  df-ring 20120  df-lmod 20765  df-lmhm 20926
This theorem is referenced by:  r1plmhm  33542
  Copyright terms: Public domain W3C validator