Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaslmhm Structured version   Visualization version   GIF version

Theorem imaslmhm 33377
Description: Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imaslmhm.1 𝐷 = (Scalar‘𝑊)
imaslmhm.2 𝐾 = (Base‘𝐷)
imaslmhm.3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
imaslmhm.w (𝜑𝑊 ∈ LMod)
imaslmhm.4 × = ( ·𝑠𝑊)
Assertion
Ref Expression
imaslmhm (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑏,𝑘,𝑝,𝑞   × ,𝑏,𝑘,𝑝,𝑞   𝐵,𝑎,𝑏,𝑘,𝑝,𝑞   𝐹,𝑎,𝑏,𝑘,𝑝,𝑞   𝐾,𝑎,𝑏,𝑘   𝑊,𝑎,𝑏,𝑘,𝑝,𝑞   𝜑,𝑎,𝑞,𝑏,𝑘,𝑝
Allowed substitution hints:   𝐶(𝑘,𝑞,𝑝,𝑎,𝑏)   𝐷(𝑘,𝑞,𝑝,𝑎,𝑏)   + (𝑎)   × (𝑎)   𝐾(𝑞,𝑝)

Proof of Theorem imaslmhm
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2737 . . 3 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . 3 𝐵 = (Base‘𝑊)
3 imaslmhm.2 . . . 4 𝐾 = (Base‘𝐷)
4 imaslmhm.1 . . . . 5 𝐷 = (Scalar‘𝑊)
54fveq2i 6884 . . . 4 (Base‘𝐷) = (Base‘(Scalar‘𝑊))
63, 5eqtri 2759 . . 3 𝐾 = (Base‘(Scalar‘𝑊))
7 imasmhm.1 . . 3 + = (+g𝑊)
8 imaslmhm.4 . . 3 × = ( ·𝑠𝑊)
9 eqid 2736 . . 3 (0g𝑊) = (0g𝑊)
10 imasmhm.f . . . 4 (𝜑𝐹:𝐵𝐶)
11 fimadmfo 6804 . . . 4 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
1210, 11syl 17 . . 3 (𝜑𝐹:𝐵onto→(𝐹𝐵))
13 imasmhm.2 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
14 imaslmhm.3 . . 3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
15 imaslmhm.w . . 3 (𝜑𝑊 ∈ LMod)
161, 2, 6, 7, 8, 9, 12, 13, 14, 15imaslmod 33373 . 2 (𝜑 → (𝐹s 𝑊) ∈ LMod)
17 eqid 2736 . . 3 ( ·𝑠 ‘(𝐹s 𝑊)) = ( ·𝑠 ‘(𝐹s 𝑊))
18 eqid 2736 . . 3 (Scalar‘(𝐹s 𝑊)) = (Scalar‘(𝐹s 𝑊))
192a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑊))
201, 19, 12, 15, 4imassca 17538 . . . 4 (𝜑𝐷 = (Scalar‘(𝐹s 𝑊)))
2120eqcomd 2742 . . 3 (𝜑 → (Scalar‘(𝐹s 𝑊)) = 𝐷)
2215lmodgrpd 20832 . . . . 5 (𝜑𝑊 ∈ Grp)
232, 10, 7, 13, 22imasghm 33375 . . . 4 (𝜑 → ((𝐹s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊))))
2423simprd 495 . . 3 (𝜑𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊)))
251, 19, 12, 15, 4, 3, 8, 17, 14imasvscaval 17557 . . . . 5 ((𝜑𝑢𝐾𝑥𝐵) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
26253expb 1120 . . . 4 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
2726eqcomd 2742 . . 3 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝐹‘(𝑢 × 𝑥)) = (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)))
282, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27islmhmd 21002 . 2 (𝜑𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊)))
2916, 28jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cima 5662  wf 6532  ontowfo 6534  cfv 6536  (class class class)co 7410  Basecbs 17233  +gcplusg 17276  Scalarcsca 17279   ·𝑠 cvsca 17280  0gc0g 17458  s cimas 17523  Grpcgrp 18921   GrpHom cghm 19200  LModclmod 20822   LMHom clmhm 20982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-lmod 20824  df-lmhm 20985
This theorem is referenced by:  r1plmhm  33624
  Copyright terms: Public domain W3C validator