![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imaslmhm | Structured version Visualization version GIF version |
Description: Given a function πΉ with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
imasmhm.b | β’ π΅ = (Baseβπ) |
imasmhm.f | β’ (π β πΉ:π΅βΆπΆ) |
imasmhm.1 | β’ + = (+gβπ) |
imasmhm.2 | β’ ((π β§ (π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π + π)) = (πΉβ(π + π)))) |
imaslmhm.1 | β’ π· = (Scalarβπ) |
imaslmhm.2 | β’ πΎ = (Baseβπ·) |
imaslmhm.3 | β’ ((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β (πΉβ(π Γ π)) = (πΉβ(π Γ π)))) |
imaslmhm.w | β’ (π β π β LMod) |
imaslmhm.4 | β’ Γ = ( Β·π βπ) |
Ref | Expression |
---|---|
imaslmhm | β’ (π β ((πΉ βs π) β LMod β§ πΉ β (π LMHom (πΉ βs π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2732 | . . 3 β’ (π β (πΉ βs π) = (πΉ βs π)) | |
2 | imasmhm.b | . . 3 β’ π΅ = (Baseβπ) | |
3 | imaslmhm.2 | . . . 4 β’ πΎ = (Baseβπ·) | |
4 | imaslmhm.1 | . . . . 5 β’ π· = (Scalarβπ) | |
5 | 4 | fveq2i 6894 | . . . 4 β’ (Baseβπ·) = (Baseβ(Scalarβπ)) |
6 | 3, 5 | eqtri 2759 | . . 3 β’ πΎ = (Baseβ(Scalarβπ)) |
7 | imasmhm.1 | . . 3 β’ + = (+gβπ) | |
8 | imaslmhm.4 | . . 3 β’ Γ = ( Β·π βπ) | |
9 | eqid 2731 | . . 3 β’ (0gβπ) = (0gβπ) | |
10 | imasmhm.f | . . . 4 β’ (π β πΉ:π΅βΆπΆ) | |
11 | fimadmfo 6814 | . . . 4 β’ (πΉ:π΅βΆπΆ β πΉ:π΅βontoβ(πΉ β π΅)) | |
12 | 10, 11 | syl 17 | . . 3 β’ (π β πΉ:π΅βontoβ(πΉ β π΅)) |
13 | imasmhm.2 | . . 3 β’ ((π β§ (π β π΅ β§ π β π΅) β§ (π β π΅ β§ π β π΅)) β (((πΉβπ) = (πΉβπ) β§ (πΉβπ) = (πΉβπ)) β (πΉβ(π + π)) = (πΉβ(π + π)))) | |
14 | imaslmhm.3 | . . 3 β’ ((π β§ (π β πΎ β§ π β π΅ β§ π β π΅)) β ((πΉβπ) = (πΉβπ) β (πΉβ(π Γ π)) = (πΉβ(π Γ π)))) | |
15 | imaslmhm.w | . . 3 β’ (π β π β LMod) | |
16 | 1, 2, 6, 7, 8, 9, 12, 13, 14, 15 | imaslmod 32739 | . 2 β’ (π β (πΉ βs π) β LMod) |
17 | eqid 2731 | . . 3 β’ ( Β·π β(πΉ βs π)) = ( Β·π β(πΉ βs π)) | |
18 | eqid 2731 | . . 3 β’ (Scalarβ(πΉ βs π)) = (Scalarβ(πΉ βs π)) | |
19 | 2 | a1i 11 | . . . . 5 β’ (π β π΅ = (Baseβπ)) |
20 | 1, 19, 12, 15, 4 | imassca 17470 | . . . 4 β’ (π β π· = (Scalarβ(πΉ βs π))) |
21 | 20 | eqcomd 2737 | . . 3 β’ (π β (Scalarβ(πΉ βs π)) = π·) |
22 | 15 | lmodgrpd 20625 | . . . . 5 β’ (π β π β Grp) |
23 | 2, 10, 7, 13, 22 | imasghm 32741 | . . . 4 β’ (π β ((πΉ βs π) β Grp β§ πΉ β (π GrpHom (πΉ βs π)))) |
24 | 23 | simprd 495 | . . 3 β’ (π β πΉ β (π GrpHom (πΉ βs π))) |
25 | 1, 19, 12, 15, 4, 3, 8, 17, 14 | imasvscaval 17489 | . . . . 5 β’ ((π β§ π’ β πΎ β§ π₯ β π΅) β (π’( Β·π β(πΉ βs π))(πΉβπ₯)) = (πΉβ(π’ Γ π₯))) |
26 | 25 | 3expb 1119 | . . . 4 β’ ((π β§ (π’ β πΎ β§ π₯ β π΅)) β (π’( Β·π β(πΉ βs π))(πΉβπ₯)) = (πΉβ(π’ Γ π₯))) |
27 | 26 | eqcomd 2737 | . . 3 β’ ((π β§ (π’ β πΎ β§ π₯ β π΅)) β (πΉβ(π’ Γ π₯)) = (π’( Β·π β(πΉ βs π))(πΉβπ₯))) |
28 | 2, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27 | islmhmd 20795 | . 2 β’ (π β πΉ β (π LMHom (πΉ βs π))) |
29 | 16, 28 | jca 511 | 1 β’ (π β ((πΉ βs π) β LMod β§ πΉ β (π LMHom (πΉ βs π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 = wceq 1540 β wcel 2105 β cima 5679 βΆwf 6539 βontoβwfo 6541 βcfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Scalarcsca 17205 Β·π cvsca 17206 0gc0g 17390 βs cimas 17455 Grpcgrp 18856 GrpHom cghm 19128 LModclmod 20615 LMHom clmhm 20775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-fz 13490 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-mulr 17216 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-0g 17392 df-imas 17459 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-grp 18859 df-minusg 18860 df-ghm 19129 df-mgp 20030 df-ur 20077 df-ring 20130 df-lmod 20617 df-lmhm 20778 |
This theorem is referenced by: r1plmhm 32956 |
Copyright terms: Public domain | W3C validator |