Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imaslmhm Structured version   Visualization version   GIF version

Theorem imaslmhm 33365
Description: Given a function 𝐹 with homomorphic properties, build the image of a left module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imaslmhm.1 𝐷 = (Scalar‘𝑊)
imaslmhm.2 𝐾 = (Base‘𝐷)
imaslmhm.3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
imaslmhm.w (𝜑𝑊 ∈ LMod)
imaslmhm.4 × = ( ·𝑠𝑊)
Assertion
Ref Expression
imaslmhm (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑏,𝑘,𝑝,𝑞   × ,𝑏,𝑘,𝑝,𝑞   𝐵,𝑎,𝑏,𝑘,𝑝,𝑞   𝐹,𝑎,𝑏,𝑘,𝑝,𝑞   𝐾,𝑎,𝑏,𝑘   𝑊,𝑎,𝑏,𝑘,𝑝,𝑞   𝜑,𝑎,𝑞,𝑏,𝑘,𝑝
Allowed substitution hints:   𝐶(𝑘,𝑞,𝑝,𝑎,𝑏)   𝐷(𝑘,𝑞,𝑝,𝑎,𝑏)   + (𝑎)   × (𝑎)   𝐾(𝑞,𝑝)

Proof of Theorem imaslmhm
Dummy variables 𝑥 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . 3 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . 3 𝐵 = (Base‘𝑊)
3 imaslmhm.2 . . . 4 𝐾 = (Base‘𝐷)
4 imaslmhm.1 . . . . 5 𝐷 = (Scalar‘𝑊)
54fveq2i 6910 . . . 4 (Base‘𝐷) = (Base‘(Scalar‘𝑊))
63, 5eqtri 2763 . . 3 𝐾 = (Base‘(Scalar‘𝑊))
7 imasmhm.1 . . 3 + = (+g𝑊)
8 imaslmhm.4 . . 3 × = ( ·𝑠𝑊)
9 eqid 2735 . . 3 (0g𝑊) = (0g𝑊)
10 imasmhm.f . . . 4 (𝜑𝐹:𝐵𝐶)
11 fimadmfo 6830 . . . 4 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
1210, 11syl 17 . . 3 (𝜑𝐹:𝐵onto→(𝐹𝐵))
13 imasmhm.2 . . 3 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
14 imaslmhm.3 . . 3 ((𝜑 ∧ (𝑘𝐾𝑎𝐵𝑏𝐵)) → ((𝐹𝑎) = (𝐹𝑏) → (𝐹‘(𝑘 × 𝑎)) = (𝐹‘(𝑘 × 𝑏))))
15 imaslmhm.w . . 3 (𝜑𝑊 ∈ LMod)
161, 2, 6, 7, 8, 9, 12, 13, 14, 15imaslmod 33361 . 2 (𝜑 → (𝐹s 𝑊) ∈ LMod)
17 eqid 2735 . . 3 ( ·𝑠 ‘(𝐹s 𝑊)) = ( ·𝑠 ‘(𝐹s 𝑊))
18 eqid 2735 . . 3 (Scalar‘(𝐹s 𝑊)) = (Scalar‘(𝐹s 𝑊))
192a1i 11 . . . . 5 (𝜑𝐵 = (Base‘𝑊))
201, 19, 12, 15, 4imassca 17566 . . . 4 (𝜑𝐷 = (Scalar‘(𝐹s 𝑊)))
2120eqcomd 2741 . . 3 (𝜑 → (Scalar‘(𝐹s 𝑊)) = 𝐷)
2215lmodgrpd 20885 . . . . 5 (𝜑𝑊 ∈ Grp)
232, 10, 7, 13, 22imasghm 33363 . . . 4 (𝜑 → ((𝐹s 𝑊) ∈ Grp ∧ 𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊))))
2423simprd 495 . . 3 (𝜑𝐹 ∈ (𝑊 GrpHom (𝐹s 𝑊)))
251, 19, 12, 15, 4, 3, 8, 17, 14imasvscaval 17585 . . . . 5 ((𝜑𝑢𝐾𝑥𝐵) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
26253expb 1119 . . . 4 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)) = (𝐹‘(𝑢 × 𝑥)))
2726eqcomd 2741 . . 3 ((𝜑 ∧ (𝑢𝐾𝑥𝐵)) → (𝐹‘(𝑢 × 𝑥)) = (𝑢( ·𝑠 ‘(𝐹s 𝑊))(𝐹𝑥)))
282, 8, 17, 4, 18, 3, 15, 16, 21, 24, 27islmhmd 21056 . 2 (𝜑𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊)))
2916, 28jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ LMod ∧ 𝐹 ∈ (𝑊 LMHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cima 5692  wf 6559  ontowfo 6561  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  s cimas 17551  Grpcgrp 18964   GrpHom cghm 19243  LModclmod 20875   LMHom clmhm 21036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-0g 17488  df-imas 17555  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-ghm 19244  df-mgp 20153  df-ur 20200  df-ring 20253  df-lmod 20877  df-lmhm 21039
This theorem is referenced by:  r1plmhm  33610
  Copyright terms: Public domain W3C validator