MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fores Structured version   Visualization version   GIF version

Theorem fores 6265
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))

Proof of Theorem fores
StepHypRef Expression
1 funres 6072 . . 3 (Fun 𝐹 → Fun (𝐹𝐴))
21anim1i 602 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
3 df-fn 6034 . . 3 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
4 df-ima 5262 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
54eqcomi 2780 . . . 4 ran (𝐹𝐴) = (𝐹𝐴)
6 df-fo 6037 . . . 4 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴)))
75, 6mpbiran2 689 . . 3 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴) Fn 𝐴)
8 ssdmres 5561 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹𝐴) = 𝐴)
98anbi2i 609 . . 3 ((Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
103, 7, 93bitr4i 292 . 2 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
112, 10sylibr 224 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wss 3723  dom cdm 5249  ran crn 5250  cres 5251  cima 5252  Fun wfun 6025   Fn wfn 6026  ontowfo 6029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-br 4787  df-opab 4847  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-res 5261  df-ima 5262  df-fun 6033  df-fn 6034  df-fo 6037
This theorem is referenced by:  resdif  6298  f1oweALT  7299  imafi  8415  f1opwfi  8426  fodomfi2  9083  fin1a2lem7  9430  znnen  15147  connima  21449  1stcfb  21469  1stckgenlem  21577  qtoprest  21741  re2ndc  22824  uniiccdif  23566  opnmblALT  23591  mbfimaopnlem  23642  ffsrn  29844  erdszelem2  31512  ivthALT  32667  poimirlem26  33768  poimirlem27  33769  lmhmfgima  38180
  Copyright terms: Public domain W3C validator