| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fores | Structured version Visualization version GIF version | ||
| Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| fores | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6523 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
| 3 | df-fn 6484 | . . 3 ⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) | |
| 4 | df-ima 5627 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 5 | 4 | eqcomi 2740 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
| 6 | df-fo 6487 | . . . 4 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴))) | |
| 7 | 5, 6 | mpbiran2 710 | . . 3 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴) Fn 𝐴) |
| 8 | ssdmres 5961 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐴) = 𝐴) | |
| 9 | 8 | anbi2i 623 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) |
| 10 | 3, 7, 9 | 3bitr4i 303 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
| 11 | 2, 10 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ⊆ wss 3897 dom cdm 5614 ran crn 5615 ↾ cres 5616 “ cima 5617 Fun wfun 6475 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-res 5626 df-ima 5627 df-fun 6483 df-fn 6484 df-fo 6487 |
| This theorem is referenced by: fimadmfoALT 6746 resdif 6784 f1oweALT 7904 imafi 9199 f1opwfi 9240 fodomfi2 9951 fin1a2lem7 10297 znnen 16121 connima 23340 1stcfb 23360 1stckgenlem 23468 qtoprest 23632 re2ndc 24716 uniiccdif 25506 opnmblALT 25531 mbfimaopnlem 25583 ffsrn 32711 cycpmconjvlem 33110 erdszelem2 35236 ivthALT 36379 poimirlem26 37696 poimirlem27 37697 lmhmfgima 43187 |
| Copyright terms: Public domain | W3C validator |