| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fores | Structured version Visualization version GIF version | ||
| Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.) |
| Ref | Expression |
|---|---|
| fores | ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funres 6524 | . . 3 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
| 2 | 1 | anim1i 615 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
| 3 | df-fn 6485 | . . 3 ⊢ ((𝐹 ↾ 𝐴) Fn 𝐴 ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) | |
| 4 | df-ima 5632 | . . . . 5 ⊢ (𝐹 “ 𝐴) = ran (𝐹 ↾ 𝐴) | |
| 5 | 4 | eqcomi 2738 | . . . 4 ⊢ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴) |
| 6 | df-fo 6488 | . . . 4 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ ((𝐹 ↾ 𝐴) Fn 𝐴 ∧ ran (𝐹 ↾ 𝐴) = (𝐹 “ 𝐴))) | |
| 7 | 5, 6 | mpbiran2 710 | . . 3 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (𝐹 ↾ 𝐴) Fn 𝐴) |
| 8 | ssdmres 5964 | . . . 4 ⊢ (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹 ↾ 𝐴) = 𝐴) | |
| 9 | 8 | anbi2i 623 | . . 3 ⊢ ((Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹 ↾ 𝐴) ∧ dom (𝐹 ↾ 𝐴) = 𝐴)) |
| 10 | 3, 7, 9 | 3bitr4i 303 | . 2 ⊢ ((𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴) ↔ (Fun (𝐹 ↾ 𝐴) ∧ 𝐴 ⊆ dom 𝐹)) |
| 11 | 2, 10 | sylibr 234 | 1 ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 ↾ 𝐴):𝐴–onto→(𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3903 dom cdm 5619 ran crn 5620 ↾ cres 5621 “ cima 5622 Fun wfun 6476 Fn wfn 6477 –onto→wfo 6480 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-res 5631 df-ima 5632 df-fun 6484 df-fn 6485 df-fo 6488 |
| This theorem is referenced by: fimadmfoALT 6747 resdif 6785 f1oweALT 7907 imafi 9204 f1opwfi 9246 fodomfi2 9954 fin1a2lem7 10300 znnen 16121 connima 23310 1stcfb 23330 1stckgenlem 23438 qtoprest 23602 re2ndc 24687 uniiccdif 25477 opnmblALT 25502 mbfimaopnlem 25554 ffsrn 32672 cycpmconjvlem 33083 erdszelem2 35169 ivthALT 36313 poimirlem26 37630 poimirlem27 37631 lmhmfgima 43061 |
| Copyright terms: Public domain | W3C validator |