MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fores Structured version   Visualization version   GIF version

Theorem fores 6797
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))

Proof of Theorem fores
StepHypRef Expression
1 funres 6575 . . 3 (Fun 𝐹 → Fun (𝐹𝐴))
21anim1i 615 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
3 df-fn 6531 . . 3 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
4 df-ima 5665 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
54eqcomi 2743 . . . 4 ran (𝐹𝐴) = (𝐹𝐴)
6 df-fo 6534 . . . 4 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴)))
75, 6mpbiran2 710 . . 3 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴) Fn 𝐴)
8 ssdmres 5998 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹𝐴) = 𝐴)
98anbi2i 623 . . 3 ((Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
103, 7, 93bitr4i 303 . 2 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
112, 10sylibr 234 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wss 3924  dom cdm 5652  ran crn 5653  cres 5654  cima 5655  Fun wfun 6522   Fn wfn 6523  ontowfo 6526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-xp 5658  df-rel 5659  df-cnv 5660  df-co 5661  df-dm 5662  df-res 5664  df-ima 5665  df-fun 6530  df-fn 6531  df-fo 6534
This theorem is referenced by:  fimadmfoALT  6798  resdif  6836  f1oweALT  7966  imafi  9320  f1opwfi  9363  fodomfi2  10067  fin1a2lem7  10413  znnen  16217  connima  23350  1stcfb  23370  1stckgenlem  23478  qtoprest  23642  re2ndc  24727  uniiccdif  25518  opnmblALT  25543  mbfimaopnlem  25595  ffsrn  32642  cycpmconjvlem  33089  erdszelem2  35143  ivthALT  36282  poimirlem26  37599  poimirlem27  37600  lmhmfgima  43040
  Copyright terms: Public domain W3C validator