MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fores Structured version   Visualization version   GIF version

Theorem fores 6603
Description: Restriction of an onto function. (Contributed by NM, 4-Mar-1997.)
Assertion
Ref Expression
fores ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))

Proof of Theorem fores
StepHypRef Expression
1 funres 6382 . . 3 (Fun 𝐹 → Fun (𝐹𝐴))
21anim1i 618 . 2 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
3 df-fn 6343 . . 3 ((𝐹𝐴) Fn 𝐴 ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
4 df-ima 5539 . . . . 5 (𝐹𝐴) = ran (𝐹𝐴)
54eqcomi 2748 . . . 4 ran (𝐹𝐴) = (𝐹𝐴)
6 df-fo 6346 . . . 4 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ ((𝐹𝐴) Fn 𝐴 ∧ ran (𝐹𝐴) = (𝐹𝐴)))
75, 6mpbiran2 710 . . 3 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (𝐹𝐴) Fn 𝐴)
8 ssdmres 5849 . . . 4 (𝐴 ⊆ dom 𝐹 ↔ dom (𝐹𝐴) = 𝐴)
98anbi2i 626 . . 3 ((Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹) ↔ (Fun (𝐹𝐴) ∧ dom (𝐹𝐴) = 𝐴))
103, 7, 93bitr4i 306 . 2 ((𝐹𝐴):𝐴onto→(𝐹𝐴) ↔ (Fun (𝐹𝐴) ∧ 𝐴 ⊆ dom 𝐹))
112, 10sylibr 237 1 ((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴):𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wss 3844  dom cdm 5526  ran crn 5527  cres 5528  cima 5529  Fun wfun 6334   Fn wfn 6335  ontowfo 6338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-ext 2711  ax-sep 5168  ax-nul 5175  ax-pr 5297
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-ral 3059  df-rex 3060  df-v 3401  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-br 5032  df-opab 5094  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-res 5538  df-ima 5539  df-fun 6342  df-fn 6343  df-fo 6346
This theorem is referenced by:  fimadmfoALT  6604  resdif  6641  f1oweALT  7701  imafiOLD  8893  f1opwfi  8904  fodomfi2  9563  fin1a2lem7  9909  znnen  15660  connima  22179  1stcfb  22199  1stckgenlem  22307  qtoprest  22471  re2ndc  23556  uniiccdif  24333  opnmblALT  24358  mbfimaopnlem  24410  ffsrn  30642  cycpmconjvlem  30988  erdszelem2  32728  ivthALT  34170  poimirlem26  35449  poimirlem27  35450  lmhmfgima  40504
  Copyright terms: Public domain W3C validator