| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasrhm | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 with homomorphic properties, build the image of a ring. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| imasmhm.b | ⊢ 𝐵 = (Base‘𝑊) |
| imasmhm.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| imasmhm.1 | ⊢ + = (+g‘𝑊) |
| imasmhm.2 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imasrhm.3 | ⊢ · = (.r‘𝑊) |
| imasrhm.4 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasrhm.w | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| Ref | Expression |
|---|---|
| imasrhm | ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2731 | . . . 4 ⊢ (𝜑 → (𝐹 “s 𝑊) = (𝐹 “s 𝑊)) | |
| 2 | imasmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| 4 | imasmhm.1 | . . . 4 ⊢ + = (+g‘𝑊) | |
| 5 | imasrhm.3 | . . . 4 ⊢ · = (.r‘𝑊) | |
| 6 | eqid 2730 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 7 | imasmhm.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 8 | fimadmfo 6740 | . . . . 5 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) |
| 10 | imasmhm.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 11 | imasrhm.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 12 | imasrhm.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 13 | 1, 3, 4, 5, 6, 9, 10, 11, 12 | imasring 20241 | . . 3 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ (𝐹‘(1r‘𝑊)) = (1r‘(𝐹 “s 𝑊)))) |
| 14 | 13 | simpld 494 | . 2 ⊢ (𝜑 → (𝐹 “s 𝑊) ∈ Ring) |
| 15 | eqid 2730 | . . 3 ⊢ (1r‘(𝐹 “s 𝑊)) = (1r‘(𝐹 “s 𝑊)) | |
| 16 | eqid 2730 | . . 3 ⊢ (.r‘(𝐹 “s 𝑊)) = (.r‘(𝐹 “s 𝑊)) | |
| 17 | 13 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐹‘(1r‘𝑊)) = (1r‘(𝐹 “s 𝑊))) |
| 18 | 9, 11, 1, 3, 12, 5, 16 | imasmulval 17431 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 19 | 18 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 20 | 19 | eqcomd 2736 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
| 21 | eqid 2730 | . . 3 ⊢ (Base‘(𝐹 “s 𝑊)) = (Base‘(𝐹 “s 𝑊)) | |
| 22 | eqid 2730 | . . 3 ⊢ (+g‘(𝐹 “s 𝑊)) = (+g‘(𝐹 “s 𝑊)) | |
| 23 | fof 6731 | . . . . 5 ⊢ (𝐹:𝐵–onto→(𝐹 “ 𝐵) → 𝐹:𝐵⟶(𝐹 “ 𝐵)) | |
| 24 | 9, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐹 “ 𝐵)) |
| 25 | 1, 3, 9, 12 | imasbas 17408 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐵) = (Base‘(𝐹 “s 𝑊))) |
| 26 | 25 | feq3d 6632 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(𝐹 “ 𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊)))) |
| 27 | 24, 26 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊))) |
| 28 | 9, 10, 1, 3, 12, 4, 22 | imasaddval 17428 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 29 | 28 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 30 | 29 | eqcomd 2736 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
| 31 | 2, 6, 15, 5, 16, 12, 14, 17, 20, 21, 4, 22, 27, 30 | isrhmd 20398 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊))) |
| 32 | 14, 31 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 “ cima 5617 ⟶wf 6473 –onto→wfo 6475 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 .rcmulr 17154 “s cimas 17400 1rcur 20092 Ringcrg 20144 RingHom crh 20380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-0g 17337 df-imas 17404 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-grp 18841 df-minusg 18842 df-ghm 19118 df-mgp 20052 df-ur 20093 df-ring 20146 df-rhm 20383 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |