| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasrhm | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 with homomorphic properties, build the image of a ring. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| imasmhm.b | ⊢ 𝐵 = (Base‘𝑊) |
| imasmhm.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| imasmhm.1 | ⊢ + = (+g‘𝑊) |
| imasmhm.2 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imasrhm.3 | ⊢ · = (.r‘𝑊) |
| imasrhm.4 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) |
| imasrhm.w | ⊢ (𝜑 → 𝑊 ∈ Ring) |
| Ref | Expression |
|---|---|
| imasrhm | ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝐹 “s 𝑊) = (𝐹 “s 𝑊)) | |
| 2 | imasmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| 4 | imasmhm.1 | . . . 4 ⊢ + = (+g‘𝑊) | |
| 5 | imasrhm.3 | . . . 4 ⊢ · = (.r‘𝑊) | |
| 6 | eqid 2733 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 7 | imasmhm.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 8 | fimadmfo 6752 | . . . . 5 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) |
| 10 | imasmhm.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 11 | imasrhm.4 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞)))) | |
| 12 | imasrhm.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
| 13 | 1, 3, 4, 5, 6, 9, 10, 11, 12 | imasring 20258 | . . 3 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ (𝐹‘(1r‘𝑊)) = (1r‘(𝐹 “s 𝑊)))) |
| 14 | 13 | simpld 494 | . 2 ⊢ (𝜑 → (𝐹 “s 𝑊) ∈ Ring) |
| 15 | eqid 2733 | . . 3 ⊢ (1r‘(𝐹 “s 𝑊)) = (1r‘(𝐹 “s 𝑊)) | |
| 16 | eqid 2733 | . . 3 ⊢ (.r‘(𝐹 “s 𝑊)) = (.r‘(𝐹 “s 𝑊)) | |
| 17 | 13 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐹‘(1r‘𝑊)) = (1r‘(𝐹 “s 𝑊))) |
| 18 | 9, 11, 1, 3, 12, 5, 16 | imasmulval 17449 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 19 | 18 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 · 𝑦))) |
| 20 | 19 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥)(.r‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
| 21 | eqid 2733 | . . 3 ⊢ (Base‘(𝐹 “s 𝑊)) = (Base‘(𝐹 “s 𝑊)) | |
| 22 | eqid 2733 | . . 3 ⊢ (+g‘(𝐹 “s 𝑊)) = (+g‘(𝐹 “s 𝑊)) | |
| 23 | fof 6743 | . . . . 5 ⊢ (𝐹:𝐵–onto→(𝐹 “ 𝐵) → 𝐹:𝐵⟶(𝐹 “ 𝐵)) | |
| 24 | 9, 23 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐹 “ 𝐵)) |
| 25 | 1, 3, 9, 12 | imasbas 17426 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐵) = (Base‘(𝐹 “s 𝑊))) |
| 26 | 25 | feq3d 6644 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(𝐹 “ 𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊)))) |
| 27 | 24, 26 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊))) |
| 28 | 9, 10, 1, 3, 12, 4, 22 | imasaddval 17446 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 29 | 28 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 30 | 29 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
| 31 | 2, 6, 15, 5, 16, 12, 14, 17, 20, 21, 4, 22, 27, 30 | isrhmd 20415 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊))) |
| 32 | 14, 31 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹 “s 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 “ cima 5624 ⟶wf 6485 –onto→wfo 6487 ‘cfv 6489 (class class class)co 7355 Basecbs 17130 +gcplusg 17171 .rcmulr 17172 “s cimas 17418 1rcur 20109 Ringcrg 20161 RingHom crh 20397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11072 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-map 8761 df-en 8879 df-dom 8880 df-sdom 8881 df-fin 8882 df-sup 9336 df-inf 9337 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-nn 12136 df-2 12198 df-3 12199 df-4 12200 df-5 12201 df-6 12202 df-7 12203 df-8 12204 df-9 12205 df-n0 12392 df-z 12479 df-dec 12599 df-uz 12743 df-fz 13418 df-struct 17068 df-sets 17085 df-slot 17103 df-ndx 17115 df-base 17131 df-plusg 17184 df-mulr 17185 df-sca 17187 df-vsca 17188 df-ip 17189 df-tset 17190 df-ple 17191 df-ds 17193 df-0g 17355 df-imas 17422 df-mgm 18558 df-sgrp 18637 df-mnd 18653 df-mhm 18701 df-grp 18859 df-minusg 18860 df-ghm 19135 df-mgp 20069 df-ur 20110 df-ring 20163 df-rhm 20400 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |