Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasrhm Structured version   Visualization version   GIF version

Theorem imasrhm 33311
Description: Given a function 𝐹 with homomorphic properties, build the image of a ring. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasrhm.3 · = (.r𝑊)
imasrhm.4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
imasrhm.w (𝜑𝑊 ∈ Ring)
Assertion
Ref Expression
imasrhm (𝜑 → ((𝐹s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑝,𝑞   · ,𝑝,𝑞   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑊,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐶(𝑞,𝑝,𝑎,𝑏)   + (𝑎,𝑏)   · (𝑎,𝑏)

Proof of Theorem imasrhm
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . 4 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . . . 5 𝐵 = (Base‘𝑊)
32a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑊))
4 imasmhm.1 . . . 4 + = (+g𝑊)
5 imasrhm.3 . . . 4 · = (.r𝑊)
6 eqid 2730 . . . 4 (1r𝑊) = (1r𝑊)
7 imasmhm.f . . . . 5 (𝜑𝐹:𝐵𝐶)
8 fimadmfo 6740 . . . . 5 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
97, 8syl 17 . . . 4 (𝜑𝐹:𝐵onto→(𝐹𝐵))
10 imasmhm.2 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
11 imasrhm.4 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))
12 imasrhm.w . . . 4 (𝜑𝑊 ∈ Ring)
131, 3, 4, 5, 6, 9, 10, 11, 12imasring 20241 . . 3 (𝜑 → ((𝐹s 𝑊) ∈ Ring ∧ (𝐹‘(1r𝑊)) = (1r‘(𝐹s 𝑊))))
1413simpld 494 . 2 (𝜑 → (𝐹s 𝑊) ∈ Ring)
15 eqid 2730 . . 3 (1r‘(𝐹s 𝑊)) = (1r‘(𝐹s 𝑊))
16 eqid 2730 . . 3 (.r‘(𝐹s 𝑊)) = (.r‘(𝐹s 𝑊))
1713simprd 495 . . 3 (𝜑 → (𝐹‘(1r𝑊)) = (1r‘(𝐹s 𝑊)))
189, 11, 1, 3, 12, 5, 16imasmulval 17431 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(.r‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
19183expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(.r‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 · 𝑦)))
2019eqcomd 2736 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹𝑥)(.r‘(𝐹s 𝑊))(𝐹𝑦)))
21 eqid 2730 . . 3 (Base‘(𝐹s 𝑊)) = (Base‘(𝐹s 𝑊))
22 eqid 2730 . . 3 (+g‘(𝐹s 𝑊)) = (+g‘(𝐹s 𝑊))
23 fof 6731 . . . . 5 (𝐹:𝐵onto→(𝐹𝐵) → 𝐹:𝐵⟶(𝐹𝐵))
249, 23syl 17 . . . 4 (𝜑𝐹:𝐵⟶(𝐹𝐵))
251, 3, 9, 12imasbas 17408 . . . . 5 (𝜑 → (𝐹𝐵) = (Base‘(𝐹s 𝑊)))
2625feq3d 6632 . . . 4 (𝜑 → (𝐹:𝐵⟶(𝐹𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹s 𝑊))))
2724, 26mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘(𝐹s 𝑊)))
289, 10, 1, 3, 12, 4, 22imasaddval 17428 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
29283expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
3029eqcomd 2736 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)))
312, 6, 15, 5, 16, 12, 14, 17, 20, 21, 4, 22, 27, 30isrhmd 20398 . 2 (𝜑𝐹 ∈ (𝑊 RingHom (𝐹s 𝑊)))
3214, 31jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ Ring ∧ 𝐹 ∈ (𝑊 RingHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  cima 5617  wf 6473  ontowfo 6475  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  .rcmulr 17154  s cimas 17400  1rcur 20092  Ringcrg 20144   RingHom crh 20380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-fz 13400  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-plusg 17166  df-mulr 17167  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-0g 17337  df-imas 17404  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-grp 18841  df-minusg 18842  df-ghm 19118  df-mgp 20052  df-ur 20093  df-ring 20146  df-rhm 20383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator