Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasmhm Structured version   Visualization version   GIF version

Theorem imasmhm 33301
Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmhm.w (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
imasmhm (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑝,𝑞   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑊,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐶(𝑞,𝑝,𝑎,𝑏)   + (𝑎,𝑏)

Proof of Theorem imasmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . . 4 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . . . 5 𝐵 = (Base‘𝑊)
32a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑊))
4 imasmhm.1 . . . 4 + = (+g𝑊)
5 imasmhm.f . . . . 5 (𝜑𝐹:𝐵𝐶)
6 fimadmfo 6749 . . . . 5 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
75, 6syl 17 . . . 4 (𝜑𝐹:𝐵onto→(𝐹𝐵))
8 imasmhm.2 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
9 imasmhm.w . . . 4 (𝜑𝑊 ∈ Mnd)
10 eqid 2729 . . . 4 (0g𝑊) = (0g𝑊)
111, 3, 4, 7, 8, 9, 10imasmnd 18667 . . 3 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊))))
1211simpld 494 . 2 (𝜑 → (𝐹s 𝑊) ∈ Mnd)
13 eqid 2729 . . 3 (Base‘(𝐹s 𝑊)) = (Base‘(𝐹s 𝑊))
14 eqid 2729 . . 3 (+g‘(𝐹s 𝑊)) = (+g‘(𝐹s 𝑊))
15 eqid 2729 . . 3 (0g‘(𝐹s 𝑊)) = (0g‘(𝐹s 𝑊))
16 fof 6740 . . . . 5 (𝐹:𝐵onto→(𝐹𝐵) → 𝐹:𝐵⟶(𝐹𝐵))
177, 16syl 17 . . . 4 (𝜑𝐹:𝐵⟶(𝐹𝐵))
181, 3, 7, 9imasbas 17434 . . . . 5 (𝜑 → (𝐹𝐵) = (Base‘(𝐹s 𝑊)))
1918feq3d 6641 . . . 4 (𝜑 → (𝐹:𝐵⟶(𝐹𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹s 𝑊))))
2017, 19mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘(𝐹s 𝑊)))
217, 8, 1, 3, 9, 4, 14imasaddval 17454 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
22213expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
2322eqcomd 2735 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)))
2411simprd 495 . . 3 (𝜑 → (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊)))
252, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24ismhmd 18678 . 2 (𝜑𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊)))
2612, 25jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cima 5626  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  0gc0g 17361  s cimas 17426  Mndcmnd 18626   MndHom cmhm 18673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-0g 17363  df-imas 17430  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator