| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasmhm | Structured version Visualization version GIF version | ||
| Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| imasmhm.b | ⊢ 𝐵 = (Base‘𝑊) |
| imasmhm.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
| imasmhm.1 | ⊢ + = (+g‘𝑊) |
| imasmhm.2 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
| imasmhm.w | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
| Ref | Expression |
|---|---|
| imasmhm | ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝐹 “s 𝑊) = (𝐹 “s 𝑊)) | |
| 2 | imasmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
| 4 | imasmhm.1 | . . . 4 ⊢ + = (+g‘𝑊) | |
| 5 | imasmhm.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
| 6 | fimadmfo 6749 | . . . . 5 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) |
| 8 | imasmhm.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
| 9 | imasmhm.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
| 10 | eqid 2733 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 11 | 1, 3, 4, 7, 8, 9, 10 | imasmnd 18685 | . . 3 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ (𝐹‘(0g‘𝑊)) = (0g‘(𝐹 “s 𝑊)))) |
| 12 | 11 | simpld 494 | . 2 ⊢ (𝜑 → (𝐹 “s 𝑊) ∈ Mnd) |
| 13 | eqid 2733 | . . 3 ⊢ (Base‘(𝐹 “s 𝑊)) = (Base‘(𝐹 “s 𝑊)) | |
| 14 | eqid 2733 | . . 3 ⊢ (+g‘(𝐹 “s 𝑊)) = (+g‘(𝐹 “s 𝑊)) | |
| 15 | eqid 2733 | . . 3 ⊢ (0g‘(𝐹 “s 𝑊)) = (0g‘(𝐹 “s 𝑊)) | |
| 16 | fof 6740 | . . . . 5 ⊢ (𝐹:𝐵–onto→(𝐹 “ 𝐵) → 𝐹:𝐵⟶(𝐹 “ 𝐵)) | |
| 17 | 7, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐹 “ 𝐵)) |
| 18 | 1, 3, 7, 9 | imasbas 17418 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐵) = (Base‘(𝐹 “s 𝑊))) |
| 19 | 18 | feq3d 6641 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(𝐹 “ 𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊)))) |
| 20 | 17, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊))) |
| 21 | 7, 8, 1, 3, 9, 4, 14 | imasaddval 17438 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 22 | 21 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
| 23 | 22 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
| 24 | 11 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝑊)) = (0g‘(𝐹 “s 𝑊))) |
| 25 | 2, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24 | ismhmd 18696 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊))) |
| 26 | 12, 25 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 “ cima 5622 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 +gcplusg 17163 0gc0g 17345 “s cimas 17410 Mndcmnd 18644 MndHom cmhm 18691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-fz 13410 df-struct 17060 df-slot 17095 df-ndx 17107 df-base 17123 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-0g 17347 df-imas 17414 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-mhm 18693 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |