Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasmhm Structured version   Visualization version   GIF version

Theorem imasmhm 33287
Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmhm.w (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
imasmhm (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑝,𝑞   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑊,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐶(𝑞,𝑝,𝑎,𝑏)   + (𝑎,𝑏)

Proof of Theorem imasmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2735 . . . 4 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . . . 5 𝐵 = (Base‘𝑊)
32a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑊))
4 imasmhm.1 . . . 4 + = (+g𝑊)
5 imasmhm.f . . . . 5 (𝜑𝐹:𝐵𝐶)
6 fimadmfo 6795 . . . . 5 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
75, 6syl 17 . . . 4 (𝜑𝐹:𝐵onto→(𝐹𝐵))
8 imasmhm.2 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
9 imasmhm.w . . . 4 (𝜑𝑊 ∈ Mnd)
10 eqid 2734 . . . 4 (0g𝑊) = (0g𝑊)
111, 3, 4, 7, 8, 9, 10imasmnd 18738 . . 3 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊))))
1211simpld 494 . 2 (𝜑 → (𝐹s 𝑊) ∈ Mnd)
13 eqid 2734 . . 3 (Base‘(𝐹s 𝑊)) = (Base‘(𝐹s 𝑊))
14 eqid 2734 . . 3 (+g‘(𝐹s 𝑊)) = (+g‘(𝐹s 𝑊))
15 eqid 2734 . . 3 (0g‘(𝐹s 𝑊)) = (0g‘(𝐹s 𝑊))
16 fof 6786 . . . . 5 (𝐹:𝐵onto→(𝐹𝐵) → 𝐹:𝐵⟶(𝐹𝐵))
177, 16syl 17 . . . 4 (𝜑𝐹:𝐵⟶(𝐹𝐵))
181, 3, 7, 9imasbas 17511 . . . . 5 (𝜑 → (𝐹𝐵) = (Base‘(𝐹s 𝑊)))
1918feq3d 6689 . . . 4 (𝜑 → (𝐹:𝐵⟶(𝐹𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹s 𝑊))))
2017, 19mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘(𝐹s 𝑊)))
217, 8, 1, 3, 9, 4, 14imasaddval 17531 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
22213expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
2322eqcomd 2740 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)))
2411simprd 495 . . 3 (𝜑 → (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊)))
252, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24ismhmd 18749 . 2 (𝜑𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊)))
2612, 25jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  cima 5654  wf 6523  ontowfo 6525  cfv 6527  (class class class)co 7399  Basecbs 17213  +gcplusg 17256  0gc0g 17438  s cimas 17503  Mndcmnd 18697   MndHom cmhm 18744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-om 7856  df-1st 7982  df-2nd 7983  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-sup 9448  df-inf 9449  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-struct 17151  df-slot 17186  df-ndx 17198  df-base 17214  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-0g 17440  df-imas 17507  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator