Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasmhm Structured version   Visualization version   GIF version

Theorem imasmhm 33326
Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmhm.w (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
imasmhm (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑝,𝑞   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑊,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐶(𝑞,𝑝,𝑎,𝑏)   + (𝑎,𝑏)

Proof of Theorem imasmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2734 . . . 4 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . . . 5 𝐵 = (Base‘𝑊)
32a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑊))
4 imasmhm.1 . . . 4 + = (+g𝑊)
5 imasmhm.f . . . . 5 (𝜑𝐹:𝐵𝐶)
6 fimadmfo 6749 . . . . 5 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
75, 6syl 17 . . . 4 (𝜑𝐹:𝐵onto→(𝐹𝐵))
8 imasmhm.2 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
9 imasmhm.w . . . 4 (𝜑𝑊 ∈ Mnd)
10 eqid 2733 . . . 4 (0g𝑊) = (0g𝑊)
111, 3, 4, 7, 8, 9, 10imasmnd 18685 . . 3 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊))))
1211simpld 494 . 2 (𝜑 → (𝐹s 𝑊) ∈ Mnd)
13 eqid 2733 . . 3 (Base‘(𝐹s 𝑊)) = (Base‘(𝐹s 𝑊))
14 eqid 2733 . . 3 (+g‘(𝐹s 𝑊)) = (+g‘(𝐹s 𝑊))
15 eqid 2733 . . 3 (0g‘(𝐹s 𝑊)) = (0g‘(𝐹s 𝑊))
16 fof 6740 . . . . 5 (𝐹:𝐵onto→(𝐹𝐵) → 𝐹:𝐵⟶(𝐹𝐵))
177, 16syl 17 . . . 4 (𝜑𝐹:𝐵⟶(𝐹𝐵))
181, 3, 7, 9imasbas 17418 . . . . 5 (𝜑 → (𝐹𝐵) = (Base‘(𝐹s 𝑊)))
1918feq3d 6641 . . . 4 (𝜑 → (𝐹:𝐵⟶(𝐹𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹s 𝑊))))
2017, 19mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘(𝐹s 𝑊)))
217, 8, 1, 3, 9, 4, 14imasaddval 17438 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
22213expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
2322eqcomd 2739 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)))
2411simprd 495 . . 3 (𝜑 → (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊)))
252, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24ismhmd 18696 . 2 (𝜑𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊)))
2612, 25jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cima 5622  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  0gc0g 17345  s cimas 17410  Mndcmnd 18644   MndHom cmhm 18691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-0g 17347  df-imas 17414  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator