Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  imasmhm Structured version   Visualization version   GIF version

Theorem imasmhm 33332
Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.)
Hypotheses
Ref Expression
imasmhm.b 𝐵 = (Base‘𝑊)
imasmhm.f (𝜑𝐹:𝐵𝐶)
imasmhm.1 + = (+g𝑊)
imasmhm.2 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmhm.w (𝜑𝑊 ∈ Mnd)
Assertion
Ref Expression
imasmhm (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Distinct variable groups:   + ,𝑝,𝑞   𝐵,𝑎,𝑏,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑊,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐶(𝑞,𝑝,𝑎,𝑏)   + (𝑎,𝑏)

Proof of Theorem imasmhm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2731 . . . 4 (𝜑 → (𝐹s 𝑊) = (𝐹s 𝑊))
2 imasmhm.b . . . . 5 𝐵 = (Base‘𝑊)
32a1i 11 . . . 4 (𝜑𝐵 = (Base‘𝑊))
4 imasmhm.1 . . . 4 + = (+g𝑊)
5 imasmhm.f . . . . 5 (𝜑𝐹:𝐵𝐶)
6 fimadmfo 6784 . . . . 5 (𝐹:𝐵𝐶𝐹:𝐵onto→(𝐹𝐵))
75, 6syl 17 . . . 4 (𝜑𝐹:𝐵onto→(𝐹𝐵))
8 imasmhm.2 . . . 4 ((𝜑 ∧ (𝑎𝐵𝑏𝐵) ∧ (𝑝𝐵𝑞𝐵)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
9 imasmhm.w . . . 4 (𝜑𝑊 ∈ Mnd)
10 eqid 2730 . . . 4 (0g𝑊) = (0g𝑊)
111, 3, 4, 7, 8, 9, 10imasmnd 18709 . . 3 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊))))
1211simpld 494 . 2 (𝜑 → (𝐹s 𝑊) ∈ Mnd)
13 eqid 2730 . . 3 (Base‘(𝐹s 𝑊)) = (Base‘(𝐹s 𝑊))
14 eqid 2730 . . 3 (+g‘(𝐹s 𝑊)) = (+g‘(𝐹s 𝑊))
15 eqid 2730 . . 3 (0g‘(𝐹s 𝑊)) = (0g‘(𝐹s 𝑊))
16 fof 6775 . . . . 5 (𝐹:𝐵onto→(𝐹𝐵) → 𝐹:𝐵⟶(𝐹𝐵))
177, 16syl 17 . . . 4 (𝜑𝐹:𝐵⟶(𝐹𝐵))
181, 3, 7, 9imasbas 17482 . . . . 5 (𝜑 → (𝐹𝐵) = (Base‘(𝐹s 𝑊)))
1918feq3d 6676 . . . 4 (𝜑 → (𝐹:𝐵⟶(𝐹𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹s 𝑊))))
2017, 19mpbid 232 . . 3 (𝜑𝐹:𝐵⟶(Base‘(𝐹s 𝑊)))
217, 8, 1, 3, 9, 4, 14imasaddval 17502 . . . . 5 ((𝜑𝑥𝐵𝑦𝐵) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
22213expb 1120 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)) = (𝐹‘(𝑥 + 𝑦)))
2322eqcomd 2736 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥)(+g‘(𝐹s 𝑊))(𝐹𝑦)))
2411simprd 495 . . 3 (𝜑 → (𝐹‘(0g𝑊)) = (0g‘(𝐹s 𝑊)))
252, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24ismhmd 18720 . 2 (𝜑𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊)))
2612, 25jca 511 1 (𝜑 → ((𝐹s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹s 𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cima 5644  wf 6510  ontowfo 6512  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  s cimas 17474  Mndcmnd 18668   MndHom cmhm 18715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-struct 17124  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-0g 17411  df-imas 17478  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator