![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > imasmhm | Structured version Visualization version GIF version |
Description: Given a function 𝐹 with homomorphic properties, build the image of a monoid. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
Ref | Expression |
---|---|
imasmhm.b | ⊢ 𝐵 = (Base‘𝑊) |
imasmhm.f | ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) |
imasmhm.1 | ⊢ + = (+g‘𝑊) |
imasmhm.2 | ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) |
imasmhm.w | ⊢ (𝜑 → 𝑊 ∈ Mnd) |
Ref | Expression |
---|---|
imasmhm | ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . . . 4 ⊢ (𝜑 → (𝐹 “s 𝑊) = (𝐹 “s 𝑊)) | |
2 | imasmhm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) |
4 | imasmhm.1 | . . . 4 ⊢ + = (+g‘𝑊) | |
5 | imasmhm.f | . . . . 5 ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | |
6 | fimadmfo 6843 | . . . . 5 ⊢ (𝐹:𝐵⟶𝐶 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵–onto→(𝐹 “ 𝐵)) |
8 | imasmhm.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵) ∧ (𝑝 ∈ 𝐵 ∧ 𝑞 ∈ 𝐵)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) | |
9 | imasmhm.w | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Mnd) | |
10 | eqid 2740 | . . . 4 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
11 | 1, 3, 4, 7, 8, 9, 10 | imasmnd 18810 | . . 3 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ (𝐹‘(0g‘𝑊)) = (0g‘(𝐹 “s 𝑊)))) |
12 | 11 | simpld 494 | . 2 ⊢ (𝜑 → (𝐹 “s 𝑊) ∈ Mnd) |
13 | eqid 2740 | . . 3 ⊢ (Base‘(𝐹 “s 𝑊)) = (Base‘(𝐹 “s 𝑊)) | |
14 | eqid 2740 | . . 3 ⊢ (+g‘(𝐹 “s 𝑊)) = (+g‘(𝐹 “s 𝑊)) | |
15 | eqid 2740 | . . 3 ⊢ (0g‘(𝐹 “s 𝑊)) = (0g‘(𝐹 “s 𝑊)) | |
16 | fof 6834 | . . . . 5 ⊢ (𝐹:𝐵–onto→(𝐹 “ 𝐵) → 𝐹:𝐵⟶(𝐹 “ 𝐵)) | |
17 | 7, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹:𝐵⟶(𝐹 “ 𝐵)) |
18 | 1, 3, 7, 9 | imasbas 17572 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐵) = (Base‘(𝐹 “s 𝑊))) |
19 | 18 | feq3d 6734 | . . . 4 ⊢ (𝜑 → (𝐹:𝐵⟶(𝐹 “ 𝐵) ↔ 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊)))) |
20 | 17, 19 | mpbid 232 | . . 3 ⊢ (𝜑 → 𝐹:𝐵⟶(Base‘(𝐹 “s 𝑊))) |
21 | 7, 8, 1, 3, 9, 4, 14 | imasaddval 17592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
22 | 21 | 3expb 1120 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦)) = (𝐹‘(𝑥 + 𝑦))) |
23 | 22 | eqcomd 2746 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥)(+g‘(𝐹 “s 𝑊))(𝐹‘𝑦))) |
24 | 11 | simprd 495 | . . 3 ⊢ (𝜑 → (𝐹‘(0g‘𝑊)) = (0g‘(𝐹 “s 𝑊))) |
25 | 2, 13, 4, 14, 10, 15, 9, 12, 20, 23, 24 | ismhmd 18821 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊))) |
26 | 12, 25 | jca 511 | 1 ⊢ (𝜑 → ((𝐹 “s 𝑊) ∈ Mnd ∧ 𝐹 ∈ (𝑊 MndHom (𝐹 “s 𝑊)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 “ cima 5703 ⟶wf 6569 –onto→wfo 6571 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 “s cimas 17564 Mndcmnd 18772 MndHom cmhm 18816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |