Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimafnex Structured version   Visualization version   GIF version

Theorem fnimafnex 43543
Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024.)
Hypothesis
Ref Expression
fnimafnex.f 𝐹 Fn 𝐵
Assertion
Ref Expression
fnimafnex (𝐹 “ (𝐺𝐴)) ∈ V

Proof of Theorem fnimafnex
StepHypRef Expression
1 fnimafnex.f . . 3 𝐹 Fn 𝐵
2 fnfun 6581 . . 3 (𝐹 Fn 𝐵 → Fun 𝐹)
31, 2ax-mp 5 . 2 Fun 𝐹
4 fvex 6835 . 2 (𝐺𝐴) ∈ V
5 funimaexg 6568 . 2 ((Fun 𝐹 ∧ (𝐺𝐴) ∈ V) → (𝐹 “ (𝐺𝐴)) ∈ V)
63, 4, 5mp2an 692 1 (𝐹 “ (𝐺𝐴)) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  Vcvv 3436  cima 5617  Fun wfun 6475   Fn wfn 6476  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator