| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimafnex | Structured version Visualization version GIF version | ||
| Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| fnimafnex.f | ⊢ 𝐹 Fn 𝐵 |
| Ref | Expression |
|---|---|
| fnimafnex | ⊢ (𝐹 “ (𝐺‘𝐴)) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnimafnex.f | . . 3 ⊢ 𝐹 Fn 𝐵 | |
| 2 | fnfun 6618 | . . 3 ⊢ (𝐹 Fn 𝐵 → Fun 𝐹) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun 𝐹 |
| 4 | fvex 6871 | . 2 ⊢ (𝐺‘𝐴) ∈ V | |
| 5 | funimaexg 6603 | . 2 ⊢ ((Fun 𝐹 ∧ (𝐺‘𝐴) ∈ V) → (𝐹 “ (𝐺‘𝐴)) ∈ V) | |
| 6 | 3, 4, 5 | mp2an 692 | 1 ⊢ (𝐹 “ (𝐺‘𝐴)) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 “ cima 5641 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-fv 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |