![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnimafnex | Structured version Visualization version GIF version |
Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024.) |
Ref | Expression |
---|---|
fnimafnex.f | ⊢ 𝐹 Fn 𝐵 |
Ref | Expression |
---|---|
fnimafnex | ⊢ (𝐹 “ (𝐺‘𝐴)) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnimafnex.f | . . 3 ⊢ 𝐹 Fn 𝐵 | |
2 | fnfun 6679 | . . 3 ⊢ (𝐹 Fn 𝐵 → Fun 𝐹) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ Fun 𝐹 |
4 | fvex 6933 | . 2 ⊢ (𝐺‘𝐴) ∈ V | |
5 | funimaexg 6664 | . 2 ⊢ ((Fun 𝐹 ∧ (𝐺‘𝐴) ∈ V) → (𝐹 “ (𝐺‘𝐴)) ∈ V) | |
6 | 3, 4, 5 | mp2an 691 | 1 ⊢ (𝐹 “ (𝐺‘𝐴)) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 “ cima 5703 Fun wfun 6567 Fn wfn 6568 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |