Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fnimafnex Structured version   Visualization version   GIF version

Theorem fnimafnex 42646
Description: The functional image of a function value exists. (Contributed by RP, 31-Oct-2024.)
Hypothesis
Ref Expression
fnimafnex.f 𝐹 Fn 𝐵
Assertion
Ref Expression
fnimafnex (𝐹 “ (𝐺𝐴)) ∈ V

Proof of Theorem fnimafnex
StepHypRef Expression
1 fnimafnex.f . . 3 𝐹 Fn 𝐵
2 fnfun 6639 . . 3 (𝐹 Fn 𝐵 → Fun 𝐹)
31, 2ax-mp 5 . 2 Fun 𝐹
4 fvex 6894 . 2 (𝐺𝐴) ∈ V
5 funimaexg 6624 . 2 ((Fun 𝐹 ∧ (𝐺𝐴) ∈ V) → (𝐹 “ (𝐺𝐴)) ∈ V)
63, 4, 5mp2an 689 1 (𝐹 “ (𝐺𝐴)) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  Vcvv 3466  cima 5669  Fun wfun 6527   Fn wfn 6528  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-fv 6541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator