![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcrescrhmALTV | Structured version Visualization version GIF version |
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rngcrescrhmALTV.u | β’ (π β π β π) |
rngcrescrhmALTV.c | β’ πΆ = (RngCatALTVβπ) |
rngcrescrhmALTV.r | β’ (π β π = (Ring β© π)) |
rngcrescrhmALTV.h | β’ π» = ( RingHom βΎ (π Γ π )) |
Ref | Expression |
---|---|
rngcrescrhmALTV | β’ (π β (πΆ βΎcat π») = ((πΆ βΎs π ) sSet β¨(Hom βndx), π»β©)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . 2 β’ (πΆ βΎcat π») = (πΆ βΎcat π») | |
2 | rngcrescrhmALTV.c | . . . 4 β’ πΆ = (RngCatALTVβπ) | |
3 | 2 | fvexi 6904 | . . 3 β’ πΆ β V |
4 | 3 | a1i 11 | . 2 β’ (π β πΆ β V) |
5 | rngcrescrhmALTV.r | . . . 4 β’ (π β π = (Ring β© π)) | |
6 | incom 4196 | . . . 4 β’ (Ring β© π) = (π β© Ring) | |
7 | 5, 6 | eqtrdi 2781 | . . 3 β’ (π β π = (π β© Ring)) |
8 | rngcrescrhmALTV.u | . . . 4 β’ (π β π β π) | |
9 | inex1g 5315 | . . . 4 β’ (π β π β (π β© Ring) β V) | |
10 | 8, 9 | syl 17 | . . 3 β’ (π β (π β© Ring) β V) |
11 | 7, 10 | eqeltrd 2825 | . 2 β’ (π β π β V) |
12 | inss1 4224 | . . . . . 6 β’ (Ring β© π) β Ring | |
13 | 5, 12 | eqsstrdi 4028 | . . . . 5 β’ (π β π β Ring) |
14 | xpss12 5688 | . . . . 5 β’ ((π β Ring β§ π β Ring) β (π Γ π ) β (Ring Γ Ring)) | |
15 | 13, 13, 14 | syl2anc 582 | . . . 4 β’ (π β (π Γ π ) β (Ring Γ Ring)) |
16 | rhmfn 20437 | . . . . 5 β’ RingHom Fn (Ring Γ Ring) | |
17 | fnssresb 6672 | . . . . 5 β’ ( RingHom Fn (Ring Γ Ring) β (( RingHom βΎ (π Γ π )) Fn (π Γ π ) β (π Γ π ) β (Ring Γ Ring))) | |
18 | 16, 17 | mp1i 13 | . . . 4 β’ (π β (( RingHom βΎ (π Γ π )) Fn (π Γ π ) β (π Γ π ) β (Ring Γ Ring))) |
19 | 15, 18 | mpbird 256 | . . 3 β’ (π β ( RingHom βΎ (π Γ π )) Fn (π Γ π )) |
20 | rngcrescrhmALTV.h | . . . 4 β’ π» = ( RingHom βΎ (π Γ π )) | |
21 | 20 | fneq1i 6646 | . . 3 β’ (π» Fn (π Γ π ) β ( RingHom βΎ (π Γ π )) Fn (π Γ π )) |
22 | 19, 21 | sylibr 233 | . 2 β’ (π β π» Fn (π Γ π )) |
23 | 1, 4, 11, 22 | rescval2 17805 | 1 β’ (π β (πΆ βΎcat π») = ((πΆ βΎs π ) sSet β¨(Hom βndx), π»β©)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 Vcvv 3463 β© cin 3940 β wss 3941 β¨cop 4631 Γ cxp 5671 βΎ cres 5675 Fn wfn 6538 βcfv 6543 (class class class)co 7413 sSet csts 17126 ndxcnx 17156 βΎs cress 17203 Hom chom 17238 βΎcat cresc 17785 Ringcrg 20172 RingHom crh 20407 RngCatALTVcrngcALTV 47433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-0g 17417 df-resc 17788 df-mhm 18734 df-ghm 19167 df-mgp 20074 df-ur 20121 df-ring 20174 df-rhm 20410 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |