Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcrescrhmALTV Structured version   Visualization version   GIF version

Theorem rngcrescrhmALTV 48394
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhmALTV (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhmALTV
StepHypRef Expression
1 eqid 2733 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhmALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
32fvexi 6845 . . 3 𝐶 ∈ V
43a1i 11 . 2 (𝜑𝐶 ∈ V)
5 rngcrescrhmALTV.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
6 incom 4160 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
75, 6eqtrdi 2784 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
8 rngcrescrhmALTV.u . . . 4 (𝜑𝑈𝑉)
9 inex1g 5261 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
108, 9syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
117, 10eqeltrd 2833 . 2 (𝜑𝑅 ∈ V)
12 inss1 4188 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
135, 12eqsstrdi 3976 . . . . 5 (𝜑𝑅 ⊆ Ring)
14 xpss12 5636 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1513, 13, 14syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
16 rhmfn 20424 . . . . 5 RingHom Fn (Ring × Ring)
17 fnssresb 6611 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1816, 17mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1915, 18mpbird 257 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
20 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2120fneq1i 6586 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2219, 21sylibr 234 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
231, 4, 11, 22rescval2 17745 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  Vcvv 3438  cin 3898  wss 3899  cop 4583   × cxp 5619  cres 5623   Fn wfn 6484  cfv 6489  (class class class)co 7355   sSet csts 17084  ndxcnx 17114  s cress 17151  Hom chom 17182  cat cresc 17725  Ringcrg 20161   RingHom crh 20397  RngCatALTVcrngcALTV 48377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-nn 12136  df-2 12198  df-sets 17085  df-slot 17103  df-ndx 17115  df-base 17131  df-plusg 17184  df-0g 17355  df-resc 17728  df-mhm 18701  df-ghm 19135  df-mgp 20069  df-ur 20110  df-ring 20163  df-rhm 20400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator