| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcrescrhmALTV | Structured version Visualization version GIF version | ||
| Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| rngcrescrhmALTV.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhmALTV.c | ⊢ 𝐶 = (RngCatALTV‘𝑈) |
| rngcrescrhmALTV.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhmALTV.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rngcrescrhmALTV | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
| 2 | rngcrescrhmALTV.c | . . . 4 ⊢ 𝐶 = (RngCatALTV‘𝑈) | |
| 3 | 2 | fvexi 6899 | . . 3 ⊢ 𝐶 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
| 5 | rngcrescrhmALTV.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 6 | incom 4189 | . . . 4 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 7 | 5, 6 | eqtrdi 2785 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
| 8 | rngcrescrhmALTV.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 9 | inex1g 5299 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 11 | 7, 10 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
| 12 | inss1 4217 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
| 13 | 5, 12 | eqsstrdi 4008 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
| 14 | xpss12 5680 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring)) | |
| 15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring)) |
| 16 | rhmfn 20466 | . . . . 5 ⊢ RingHom Fn (Ring × Ring) | |
| 17 | fnssresb 6669 | . . . . 5 ⊢ ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) | |
| 18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) |
| 19 | 15, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
| 20 | rngcrescrhmALTV.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 21 | 20 | fneq1i 6644 | . . 3 ⊢ (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| 23 | 1, 4, 11, 22 | rescval2 17842 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ⊆ wss 3931 〈cop 4612 × cxp 5663 ↾ cres 5667 Fn wfn 6535 ‘cfv 6540 (class class class)co 7412 sSet csts 17181 ndxcnx 17211 ↾s cress 17251 Hom chom 17283 ↾cat cresc 17822 Ringcrg 20197 RingHom crh 20436 RngCatALTVcrngcALTV 48113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7736 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7369 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8726 df-map 8849 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11475 df-neg 11476 df-nn 12248 df-2 12310 df-sets 17182 df-slot 17200 df-ndx 17212 df-base 17229 df-plusg 17285 df-0g 17456 df-resc 17825 df-mhm 18764 df-ghm 19199 df-mgp 20105 df-ur 20146 df-ring 20199 df-rhm 20439 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |