Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngcrescrhmALTV Structured version   Visualization version   GIF version

Theorem rngcrescrhmALTV 47235
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) (New usage is discouraged.)
Hypotheses
Ref Expression
rngcrescrhmALTV.u (𝜑𝑈𝑉)
rngcrescrhmALTV.c 𝐶 = (RngCatALTV‘𝑈)
rngcrescrhmALTV.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhmALTV.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhmALTV (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhmALTV
StepHypRef Expression
1 eqid 2726 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhmALTV.c . . . 4 𝐶 = (RngCatALTV‘𝑈)
32fvexi 6899 . . 3 𝐶 ∈ V
43a1i 11 . 2 (𝜑𝐶 ∈ V)
5 rngcrescrhmALTV.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
6 incom 4196 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
75, 6eqtrdi 2782 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
8 rngcrescrhmALTV.u . . . 4 (𝜑𝑈𝑉)
9 inex1g 5312 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
108, 9syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
117, 10eqeltrd 2827 . 2 (𝜑𝑅 ∈ V)
12 inss1 4223 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
135, 12eqsstrdi 4031 . . . . 5 (𝜑𝑅 ⊆ Ring)
14 xpss12 5684 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1513, 13, 14syl2anc 583 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
16 rhmfn 20401 . . . . 5 RingHom Fn (Ring × Ring)
17 fnssresb 6666 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1816, 17mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1915, 18mpbird 257 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
20 rngcrescrhmALTV.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2120fneq1i 6640 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2219, 21sylibr 233 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
231, 4, 11, 22rescval2 17784 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  Vcvv 3468  cin 3942  wss 3943  cop 4629   × cxp 5667  cres 5671   Fn wfn 6532  cfv 6537  (class class class)co 7405   sSet csts 17105  ndxcnx 17135  s cress 17182  Hom chom 17217  cat cresc 17764  Ringcrg 20138   RingHom crh 20371  RngCatALTVcrngcALTV 47218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-plusg 17219  df-0g 17396  df-resc 17767  df-mhm 18713  df-ghm 19139  df-mgp 20040  df-ur 20087  df-ring 20140  df-rhm 20374
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator