| Step | Hyp | Ref
| Expression |
| 1 | | ringrng 20250 |
. . . . . 6
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
| 3 | 2 | ssrdv 3969 |
. . . 4
⊢ (𝜑 → Ring ⊆
Rng) |
| 4 | 3 | ssrind 4224 |
. . 3
⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
| 5 | | rhmsscrnghm.r |
. . 3
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| 6 | | rhmsscrnghm.s |
. . 3
⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) |
| 7 | 4, 5, 6 | 3sstr4d 4019 |
. 2
⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
| 8 | | ovres 7578 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦)) |
| 9 | 8 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦)) |
| 10 | 9 | eleq2d 2821 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ↔ ℎ ∈ (𝑥 RingHom 𝑦))) |
| 11 | | rhmisrnghm 20445 |
. . . . . 6
⊢ (ℎ ∈ (𝑥 RingHom 𝑦) → ℎ ∈ (𝑥 RngHom 𝑦)) |
| 12 | 7 | sseld 3962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ 𝑆)) |
| 13 | 7 | sseld 3962 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑆)) |
| 14 | 12, 13 | anim12d 609 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆))) |
| 15 | 14 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
| 16 | | ovres 7578 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHom 𝑦)) |
| 17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHom 𝑦)) |
| 18 | 17 | eleq2d 2821 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦) ↔ ℎ ∈ (𝑥 RngHom 𝑦))) |
| 19 | 11, 18 | imbitrrid 246 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥 RingHom 𝑦) → ℎ ∈ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦))) |
| 20 | 10, 19 | sylbid 240 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) → ℎ ∈ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦))) |
| 21 | 20 | ssrdv 3969 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦)) |
| 22 | 21 | ralrimivva 3188 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦)) |
| 23 | | inss1 4217 |
. . . . . 6
⊢ (Ring
∩ 𝑈) ⊆
Ring |
| 24 | 5, 23 | eqsstrdi 4008 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ Ring) |
| 25 | | xpss12 5674 |
. . . . 5
⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
| 26 | 24, 24, 25 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
| 27 | | rhmfn 20464 |
. . . . 5
⊢ RingHom
Fn (Ring × Ring) |
| 28 | | fnssresb 6665 |
. . . . 5
⊢ ( RingHom
Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring ×
Ring))) |
| 29 | 27, 28 | mp1i 13 |
. . . 4
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring ×
Ring))) |
| 30 | 26, 29 | mpbird 257 |
. . 3
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
| 31 | | inss1 4217 |
. . . . . 6
⊢ (Rng
∩ 𝑈) ⊆
Rng |
| 32 | 6, 31 | eqsstrdi 4008 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ Rng) |
| 33 | | xpss12 5674 |
. . . . 5
⊢ ((𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng) → (𝑆 × 𝑆) ⊆ (Rng ×
Rng)) |
| 34 | 32, 32, 33 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (Rng ×
Rng)) |
| 35 | | rnghmfn 20404 |
. . . . 5
⊢ RngHom
Fn (Rng × Rng) |
| 36 | | fnssresb 6665 |
. . . . 5
⊢ ( RngHom
Fn (Rng × Rng) → (( RngHom ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng ×
Rng))) |
| 37 | 35, 36 | mp1i 13 |
. . . 4
⊢ (𝜑 → (( RngHom ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng ×
Rng))) |
| 38 | 34, 37 | mpbird 257 |
. . 3
⊢ (𝜑 → ( RngHom ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
| 39 | | rhmsscrnghm.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| 40 | | incom 4189 |
. . . . . 6
⊢ (Rng
∩ 𝑈) = (𝑈 ∩ Rng) |
| 41 | | inex1g 5294 |
. . . . . 6
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) |
| 42 | 40, 41 | eqeltrid 2839 |
. . . . 5
⊢ (𝑈 ∈ 𝑉 → (Rng ∩ 𝑈) ∈ V) |
| 43 | 39, 42 | syl 17 |
. . . 4
⊢ (𝜑 → (Rng ∩ 𝑈) ∈ V) |
| 44 | 6, 43 | eqeltrd 2835 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
| 45 | 30, 38, 44 | isssc 17838 |
. 2
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾
(𝑆 × 𝑆)) ↔ (𝑅 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHom ↾ (𝑆 × 𝑆))𝑦)))) |
| 46 | 7, 22, 45 | mpbir2and 713 |
1
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHom ↾
(𝑆 × 𝑆))) |