Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rhmsscrnghm Structured version   Visualization version   GIF version

Theorem rhmsscrnghm 45472
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rhmsscrnghm.u (𝜑𝑈𝑉)
rhmsscrnghm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rhmsscrnghm.s (𝜑𝑆 = (Rng ∩ 𝑈))
Assertion
Ref Expression
rhmsscrnghm (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ (𝑆 × 𝑆)))

Proof of Theorem rhmsscrnghm
Dummy variables 𝑥 𝑦 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ringrng 45325 . . . . . 6 (𝑟 ∈ Ring → 𝑟 ∈ Rng)
21a1i 11 . . . . 5 (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng))
32ssrdv 3923 . . . 4 (𝜑 → Ring ⊆ Rng)
43ssrind 4166 . . 3 (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈))
5 rhmsscrnghm.r . . 3 (𝜑𝑅 = (Ring ∩ 𝑈))
6 rhmsscrnghm.s . . 3 (𝜑𝑆 = (Rng ∩ 𝑈))
74, 5, 63sstr4d 3964 . 2 (𝜑𝑅𝑆)
8 ovres 7416 . . . . . . 7 ((𝑥𝑅𝑦𝑅) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦))
98adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦))
109eleq2d 2824 . . . . 5 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ( ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ↔ ∈ (𝑥 RingHom 𝑦)))
11 rhmisrnghm 45366 . . . . . 6 ( ∈ (𝑥 RingHom 𝑦) → ∈ (𝑥 RngHomo 𝑦))
127sseld 3916 . . . . . . . . . 10 (𝜑 → (𝑥𝑅𝑥𝑆))
137sseld 3916 . . . . . . . . . 10 (𝜑 → (𝑦𝑅𝑦𝑆))
1412, 13anim12d 608 . . . . . . . . 9 (𝜑 → ((𝑥𝑅𝑦𝑅) → (𝑥𝑆𝑦𝑆)))
1514imp 406 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → (𝑥𝑆𝑦𝑆))
16 ovres 7416 . . . . . . . 8 ((𝑥𝑆𝑦𝑆) → (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHomo 𝑦))
1715, 16syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHomo 𝑦))
1817eleq2d 2824 . . . . . 6 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ( ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) ↔ ∈ (𝑥 RngHomo 𝑦)))
1911, 18syl5ibr 245 . . . . 5 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ( ∈ (𝑥 RingHom 𝑦) → ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦)))
2010, 19sylbid 239 . . . 4 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → ( ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) → ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦)))
2120ssrdv 3923 . . 3 ((𝜑 ∧ (𝑥𝑅𝑦𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦))
2221ralrimivva 3114 . 2 (𝜑 → ∀𝑥𝑅𝑦𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦))
23 inss1 4159 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
245, 23eqsstrdi 3971 . . . . 5 (𝜑𝑅 ⊆ Ring)
25 xpss12 5595 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
2624, 24, 25syl2anc 583 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
27 rhmfn 45364 . . . . 5 RingHom Fn (Ring × Ring)
28 fnssresb 6538 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
2927, 28mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
3026, 29mpbird 256 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
31 inss1 4159 . . . . . 6 (Rng ∩ 𝑈) ⊆ Rng
326, 31eqsstrdi 3971 . . . . 5 (𝜑𝑆 ⊆ Rng)
33 xpss12 5595 . . . . 5 ((𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng) → (𝑆 × 𝑆) ⊆ (Rng × Rng))
3432, 32, 33syl2anc 583 . . . 4 (𝜑 → (𝑆 × 𝑆) ⊆ (Rng × Rng))
35 rnghmfn 45336 . . . . 5 RngHomo Fn (Rng × Rng)
36 fnssresb 6538 . . . . 5 ( RngHomo Fn (Rng × Rng) → (( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng × Rng)))
3735, 36mp1i 13 . . . 4 (𝜑 → (( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng × Rng)))
3834, 37mpbird 256 . . 3 (𝜑 → ( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆))
39 rhmsscrnghm.u . . . . 5 (𝜑𝑈𝑉)
40 incom 4131 . . . . . 6 (Rng ∩ 𝑈) = (𝑈 ∩ Rng)
41 inex1g 5238 . . . . . 6 (𝑈𝑉 → (𝑈 ∩ Rng) ∈ V)
4240, 41eqeltrid 2843 . . . . 5 (𝑈𝑉 → (Rng ∩ 𝑈) ∈ V)
4339, 42syl 17 . . . 4 (𝜑 → (Rng ∩ 𝑈) ∈ V)
446, 43eqeltrd 2839 . . 3 (𝜑𝑆 ∈ V)
4530, 38, 44isssc 17449 . 2 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ (𝑆 × 𝑆)) ↔ (𝑅𝑆 ∧ ∀𝑥𝑅𝑦𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦))))
467, 22, 45mpbir2and 709 1 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾ (𝑆 × 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cin 3882  wss 3883   class class class wbr 5070   × cxp 5578  cres 5582   Fn wfn 6413  (class class class)co 7255  cat cssc 17436  Ringcrg 19698   RingHom crh 19871  Rngcrng 45320   RngHomo crngh 45331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-ssc 17439  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-rnghom 19874  df-mgmhm 45221  df-rng0 45321  df-rnghomo 45333
This theorem is referenced by:  rhmsubcrngc  45475  rhmsubc  45536  rhmsubcALTV  45554
  Copyright terms: Public domain W3C validator