Step | Hyp | Ref
| Expression |
1 | | ringrng 45325 |
. . . . . 6
⊢ (𝑟 ∈ Ring → 𝑟 ∈ Rng) |
2 | 1 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ Ring → 𝑟 ∈ Rng)) |
3 | 2 | ssrdv 3923 |
. . . 4
⊢ (𝜑 → Ring ⊆
Rng) |
4 | 3 | ssrind 4166 |
. . 3
⊢ (𝜑 → (Ring ∩ 𝑈) ⊆ (Rng ∩ 𝑈)) |
5 | | rhmsscrnghm.r |
. . 3
⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
6 | | rhmsscrnghm.s |
. . 3
⊢ (𝜑 → 𝑆 = (Rng ∩ 𝑈)) |
7 | 4, 5, 6 | 3sstr4d 3964 |
. 2
⊢ (𝜑 → 𝑅 ⊆ 𝑆) |
8 | | ovres 7416 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦)) |
9 | 8 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) = (𝑥 RingHom 𝑦)) |
10 | 9 | eleq2d 2824 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ↔ ℎ ∈ (𝑥 RingHom 𝑦))) |
11 | | rhmisrnghm 45366 |
. . . . . 6
⊢ (ℎ ∈ (𝑥 RingHom 𝑦) → ℎ ∈ (𝑥 RngHomo 𝑦)) |
12 | 7 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑥 ∈ 𝑅 → 𝑥 ∈ 𝑆)) |
13 | 7 | sseld 3916 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝑅 → 𝑦 ∈ 𝑆)) |
14 | 12, 13 | anim12d 608 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅) → (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆))) |
15 | 14 | imp 406 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) |
16 | | ovres 7416 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHomo 𝑦)) |
17 | 15, 16 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) = (𝑥 RngHomo 𝑦)) |
18 | 17 | eleq2d 2824 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦) ↔ ℎ ∈ (𝑥 RngHomo 𝑦))) |
19 | 11, 18 | syl5ibr 245 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥 RingHom 𝑦) → ℎ ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦))) |
20 | 10, 19 | sylbid 239 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (ℎ ∈ (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) → ℎ ∈ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦))) |
21 | 20 | ssrdv 3923 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅)) → (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦)) |
22 | 21 | ralrimivva 3114 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦)) |
23 | | inss1 4159 |
. . . . . 6
⊢ (Ring
∩ 𝑈) ⊆
Ring |
24 | 5, 23 | eqsstrdi 3971 |
. . . . 5
⊢ (𝜑 → 𝑅 ⊆ Ring) |
25 | | xpss12 5595 |
. . . . 5
⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
26 | 24, 24, 25 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring ×
Ring)) |
27 | | rhmfn 45364 |
. . . . 5
⊢ RingHom
Fn (Ring × Ring) |
28 | | fnssresb 6538 |
. . . . 5
⊢ ( RingHom
Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring ×
Ring))) |
29 | 27, 28 | mp1i 13 |
. . . 4
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring ×
Ring))) |
30 | 26, 29 | mpbird 256 |
. . 3
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
31 | | inss1 4159 |
. . . . . 6
⊢ (Rng
∩ 𝑈) ⊆
Rng |
32 | 6, 31 | eqsstrdi 3971 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ Rng) |
33 | | xpss12 5595 |
. . . . 5
⊢ ((𝑆 ⊆ Rng ∧ 𝑆 ⊆ Rng) → (𝑆 × 𝑆) ⊆ (Rng ×
Rng)) |
34 | 32, 32, 33 | syl2anc 583 |
. . . 4
⊢ (𝜑 → (𝑆 × 𝑆) ⊆ (Rng ×
Rng)) |
35 | | rnghmfn 45336 |
. . . . 5
⊢ RngHomo
Fn (Rng × Rng) |
36 | | fnssresb 6538 |
. . . . 5
⊢ ( RngHomo
Fn (Rng × Rng) → (( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng ×
Rng))) |
37 | 35, 36 | mp1i 13 |
. . . 4
⊢ (𝜑 → (( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆) ↔ (𝑆 × 𝑆) ⊆ (Rng ×
Rng))) |
38 | 34, 37 | mpbird 256 |
. . 3
⊢ (𝜑 → ( RngHomo ↾ (𝑆 × 𝑆)) Fn (𝑆 × 𝑆)) |
39 | | rhmsscrnghm.u |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ 𝑉) |
40 | | incom 4131 |
. . . . . 6
⊢ (Rng
∩ 𝑈) = (𝑈 ∩ Rng) |
41 | | inex1g 5238 |
. . . . . 6
⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Rng) ∈ V) |
42 | 40, 41 | eqeltrid 2843 |
. . . . 5
⊢ (𝑈 ∈ 𝑉 → (Rng ∩ 𝑈) ∈ V) |
43 | 39, 42 | syl 17 |
. . . 4
⊢ (𝜑 → (Rng ∩ 𝑈) ∈ V) |
44 | 6, 43 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → 𝑆 ∈ V) |
45 | 30, 38, 44 | isssc 17449 |
. 2
⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾
(𝑆 × 𝑆)) ↔ (𝑅 ⊆ 𝑆 ∧ ∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑅 (𝑥( RingHom ↾ (𝑅 × 𝑅))𝑦) ⊆ (𝑥( RngHomo ↾ (𝑆 × 𝑆))𝑦)))) |
46 | 7, 22, 45 | mpbir2and 709 |
1
⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) ⊆cat ( RngHomo ↾
(𝑆 × 𝑆))) |