| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrdred1hash | Structured version Visualization version GIF version | ||
| Description: The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
| Ref | Expression |
|---|---|
| wrdred1hash | ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl 14498 | . . 3 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0) | |
| 2 | wrdf 14483 | . . . 4 ⊢ (𝐹 ∈ Word 𝑆 → 𝐹:(0..^(♯‘𝐹))⟶𝑆) | |
| 3 | ffn 6688 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))⟶𝑆 → 𝐹 Fn (0..^(♯‘𝐹))) | |
| 4 | nn0z 12554 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
| 5 | fzossrbm1 13649 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) | |
| 6 | 4, 5 | syl 17 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
| 7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
| 8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
| 9 | fnssresb 6640 | . . . . . . . . 9 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))) | |
| 10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))) |
| 11 | 8, 10 | mpbird 257 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1))) |
| 12 | hashfn 14340 | . . . . . . 7 ⊢ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1)))) | |
| 13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1)))) |
| 14 | 1nn0 12458 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
| 15 | nn0sub2 12595 | . . . . . . . . 9 ⊢ ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0) | |
| 16 | 14, 15 | mp3an1 1450 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0) |
| 17 | hashfzo0 14395 | . . . . . . . 8 ⊢ (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) | |
| 18 | 16, 17 | syl 17 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) |
| 19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) |
| 20 | 13, 19 | eqtrd 2764 | . . . . 5 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
| 22 | 2, 3, 21 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ Word 𝑆 → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
| 23 | 1, 22 | mpand 695 | . 2 ⊢ (𝐹 ∈ Word 𝑆 → (1 ≤ (♯‘𝐹) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 ↾ cres 5640 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 ≤ cle 11209 − cmin 11405 ℕ0cn0 12442 ℤcz 12529 ..^cfzo 13615 ♯chash 14295 Word cword 14478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 |
| This theorem is referenced by: redwlklem 29599 redwlk 29600 |
| Copyright terms: Public domain | W3C validator |