![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrdred1hash | Structured version Visualization version GIF version |
Description: The length of a word truncated by a symbol. (Contributed by Alexander van der Vekens, 1-Nov-2017.) (Revised by AV, 29-Jan-2021.) |
Ref | Expression |
---|---|
wrdred1hash | ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lencl 14568 | . . 3 ⊢ (𝐹 ∈ Word 𝑆 → (♯‘𝐹) ∈ ℕ0) | |
2 | wrdf 14554 | . . . 4 ⊢ (𝐹 ∈ Word 𝑆 → 𝐹:(0..^(♯‘𝐹))⟶𝑆) | |
3 | ffn 6737 | . . . 4 ⊢ (𝐹:(0..^(♯‘𝐹))⟶𝑆 → 𝐹 Fn (0..^(♯‘𝐹))) | |
4 | nn0z 12636 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℤ) | |
5 | fzossrbm1 13725 | . . . . . . . . . . 11 ⊢ ((♯‘𝐹) ∈ ℤ → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) | |
6 | 4, 5 | syl 17 | . . . . . . . . . 10 ⊢ ((♯‘𝐹) ∈ ℕ0 → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
7 | 6 | adantr 480 | . . . . . . . . 9 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
8 | 7 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹))) |
9 | fnssresb 6691 | . . . . . . . . 9 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))) | |
10 | 9 | adantr 480 | . . . . . . . 8 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) ↔ (0..^((♯‘𝐹) − 1)) ⊆ (0..^(♯‘𝐹)))) |
11 | 8, 10 | mpbird 257 | . . . . . . 7 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1))) |
12 | hashfn 14411 | . . . . . . 7 ⊢ ((𝐹 ↾ (0..^((♯‘𝐹) − 1))) Fn (0..^((♯‘𝐹) − 1)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1)))) | |
13 | 11, 12 | syl 17 | . . . . . 6 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = (♯‘(0..^((♯‘𝐹) − 1)))) |
14 | 1nn0 12540 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
15 | nn0sub2 12677 | . . . . . . . . 9 ⊢ ((1 ∈ ℕ0 ∧ (♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0) | |
16 | 14, 15 | mp3an1 1447 | . . . . . . . 8 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → ((♯‘𝐹) − 1) ∈ ℕ0) |
17 | hashfzo0 14466 | . . . . . . . 8 ⊢ (((♯‘𝐹) − 1) ∈ ℕ0 → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) | |
18 | 16, 17 | syl 17 | . . . . . . 7 ⊢ (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) |
19 | 18 | adantl 481 | . . . . . 6 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(0..^((♯‘𝐹) − 1))) = ((♯‘𝐹) − 1)) |
20 | 13, 19 | eqtrd 2775 | . . . . 5 ⊢ ((𝐹 Fn (0..^(♯‘𝐹)) ∧ ((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹))) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
21 | 20 | ex 412 | . . . 4 ⊢ (𝐹 Fn (0..^(♯‘𝐹)) → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
22 | 2, 3, 21 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ Word 𝑆 → (((♯‘𝐹) ∈ ℕ0 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
23 | 1, 22 | mpand 695 | . 2 ⊢ (𝐹 ∈ Word 𝑆 → (1 ≤ (♯‘𝐹) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1))) |
24 | 23 | imp 406 | 1 ⊢ ((𝐹 ∈ Word 𝑆 ∧ 1 ≤ (♯‘𝐹)) → (♯‘(𝐹 ↾ (0..^((♯‘𝐹) − 1)))) = ((♯‘𝐹) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 class class class wbr 5148 ↾ cres 5691 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 0cc0 11153 1c1 11154 ≤ cle 11294 − cmin 11490 ℕ0cn0 12524 ℤcz 12611 ..^cfzo 13691 ♯chash 14366 Word cword 14549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-n0 12525 df-z 12612 df-uz 12877 df-fz 13545 df-fzo 13692 df-hash 14367 df-word 14550 |
This theorem is referenced by: redwlklem 29704 redwlk 29705 |
Copyright terms: Public domain | W3C validator |