MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcrescrhm Structured version   Visualization version   GIF version

Theorem rngcrescrhm 20649
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhm (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhm
StepHypRef Expression
1 eqid 2736 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhm.c . . . 4 𝐶 = (RngCat‘𝑈)
32fvexi 6895 . . 3 𝐶 ∈ V
43a1i 11 . 2 (𝜑𝐶 ∈ V)
5 rngcrescrhm.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
6 incom 4189 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
75, 6eqtrdi 2787 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
8 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
9 inex1g 5294 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
108, 9syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
117, 10eqeltrd 2835 . 2 (𝜑𝑅 ∈ V)
12 inss1 4217 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
135, 12eqsstrdi 4008 . . . . 5 (𝜑𝑅 ⊆ Ring)
14 xpss12 5674 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1513, 13, 14syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
16 rhmfn 20464 . . . . 5 RingHom Fn (Ring × Ring)
17 fnssresb 6665 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1816, 17mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1915, 18mpbird 257 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
20 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2120fneq1i 6640 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2219, 21sylibr 234 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
231, 4, 11, 22rescval2 17846 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  wss 3931  cop 4612   × cxp 5657  cres 5661   Fn wfn 6531  cfv 6536  (class class class)co 7410   sSet csts 17187  ndxcnx 17217  s cress 17256  Hom chom 17287  cat cresc 17826  Ringcrg 20198   RingHom crh 20434  RngCatcrngc 20581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-0g 17460  df-resc 17829  df-mhm 18766  df-ghm 19201  df-mgp 20106  df-ur 20147  df-ring 20200  df-rhm 20437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator