![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngcrescrhm | Structured version Visualization version GIF version |
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
Ref | Expression |
---|---|
rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
Ref | Expression |
---|---|
rngcrescrhm | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
2 | rngcrescrhm.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
3 | 2 | fvexi 6902 | . . 3 ⊢ 𝐶 ∈ V |
4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
5 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
6 | incom 4200 | . . . 4 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
7 | 5, 6 | eqtrdi 2788 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
8 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | inex1g 5318 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
11 | 7, 10 | eqeltrd 2833 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
12 | inss1 4227 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
13 | 5, 12 | eqsstrdi 4035 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
14 | xpss12 5690 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring)) | |
15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring)) |
16 | rhmfn 46705 | . . . . 5 ⊢ RingHom Fn (Ring × Ring) | |
17 | fnssresb 6669 | . . . . 5 ⊢ ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) | |
18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) |
19 | 15, 18 | mpbird 256 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
20 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
21 | 20 | fneq1i 6643 | . . 3 ⊢ (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
22 | 19, 21 | sylibr 233 | . 2 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
23 | 1, 4, 11, 22 | rescval2 17771 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3946 ⊆ wss 3947 〈cop 4633 × cxp 5673 ↾ cres 5677 Fn wfn 6535 ‘cfv 6540 (class class class)co 7405 sSet csts 17092 ndxcnx 17122 ↾s cress 17169 Hom chom 17204 ↾cat cresc 17751 Ringcrg 20049 RingHom crh 20240 RngCatcrngc 46808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-resc 17754 df-mhm 18667 df-ghm 19084 df-mgp 19982 df-ur 19999 df-ring 20051 df-rnghom 20243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |