| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngcrescrhm | Structured version Visualization version GIF version | ||
| Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.) |
| Ref | Expression |
|---|---|
| rngcrescrhm.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| rngcrescrhm.c | ⊢ 𝐶 = (RngCat‘𝑈) |
| rngcrescrhm.r | ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) |
| rngcrescrhm.h | ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) |
| Ref | Expression |
|---|---|
| rngcrescrhm | ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ (𝐶 ↾cat 𝐻) = (𝐶 ↾cat 𝐻) | |
| 2 | rngcrescrhm.c | . . . 4 ⊢ 𝐶 = (RngCat‘𝑈) | |
| 3 | 2 | fvexi 6836 | . . 3 ⊢ 𝐶 ∈ V |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝜑 → 𝐶 ∈ V) |
| 5 | rngcrescrhm.r | . . . 4 ⊢ (𝜑 → 𝑅 = (Ring ∩ 𝑈)) | |
| 6 | incom 4156 | . . . 4 ⊢ (Ring ∩ 𝑈) = (𝑈 ∩ Ring) | |
| 7 | 5, 6 | eqtrdi 2782 | . . 3 ⊢ (𝜑 → 𝑅 = (𝑈 ∩ Ring)) |
| 8 | rngcrescrhm.u | . . . 4 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 9 | inex1g 5255 | . . . 4 ⊢ (𝑈 ∈ 𝑉 → (𝑈 ∩ Ring) ∈ V) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑈 ∩ Ring) ∈ V) |
| 11 | 7, 10 | eqeltrd 2831 | . 2 ⊢ (𝜑 → 𝑅 ∈ V) |
| 12 | inss1 4184 | . . . . . 6 ⊢ (Ring ∩ 𝑈) ⊆ Ring | |
| 13 | 5, 12 | eqsstrdi 3974 | . . . . 5 ⊢ (𝜑 → 𝑅 ⊆ Ring) |
| 14 | xpss12 5629 | . . . . 5 ⊢ ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring)) | |
| 15 | 13, 13, 14 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring)) |
| 16 | rhmfn 20414 | . . . . 5 ⊢ RingHom Fn (Ring × Ring) | |
| 17 | fnssresb 6603 | . . . . 5 ⊢ ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) | |
| 18 | 16, 17 | mp1i 13 | . . . 4 ⊢ (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring))) |
| 19 | 15, 18 | mpbird 257 | . . 3 ⊢ (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
| 20 | rngcrescrhm.h | . . . 4 ⊢ 𝐻 = ( RingHom ↾ (𝑅 × 𝑅)) | |
| 21 | 20 | fneq1i 6578 | . . 3 ⊢ (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅)) |
| 22 | 19, 21 | sylibr 234 | . 2 ⊢ (𝜑 → 𝐻 Fn (𝑅 × 𝑅)) |
| 23 | 1, 4, 11, 22 | rescval2 17735 | 1 ⊢ (𝜑 → (𝐶 ↾cat 𝐻) = ((𝐶 ↾s 𝑅) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ⊆ wss 3897 〈cop 4579 × cxp 5612 ↾ cres 5616 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 ↾s cress 17141 Hom chom 17172 ↾cat cresc 17715 Ringcrg 20151 RingHom crh 20387 RngCatcrngc 20531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-resc 17718 df-mhm 18691 df-ghm 19125 df-mgp 20059 df-ur 20100 df-ring 20153 df-rhm 20390 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |