MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcrescrhm Structured version   Visualization version   GIF version

Theorem rngcrescrhm 20569
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhm (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhm
StepHypRef Expression
1 eqid 2729 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhm.c . . . 4 𝐶 = (RngCat‘𝑈)
32fvexi 6836 . . 3 𝐶 ∈ V
43a1i 11 . 2 (𝜑𝐶 ∈ V)
5 rngcrescrhm.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
6 incom 4160 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
75, 6eqtrdi 2780 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
8 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
9 inex1g 5258 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
108, 9syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
117, 10eqeltrd 2828 . 2 (𝜑𝑅 ∈ V)
12 inss1 4188 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
135, 12eqsstrdi 3980 . . . . 5 (𝜑𝑅 ⊆ Ring)
14 xpss12 5634 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1513, 13, 14syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
16 rhmfn 20384 . . . . 5 RingHom Fn (Ring × Ring)
17 fnssresb 6604 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1816, 17mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1915, 18mpbird 257 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
20 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2120fneq1i 6579 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2219, 21sylibr 234 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
231, 4, 11, 22rescval2 17735 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  wss 3903  cop 4583   × cxp 5617  cres 5621   Fn wfn 6477  cfv 6482  (class class class)co 7349   sSet csts 17074  ndxcnx 17104  s cress 17141  Hom chom 17172  cat cresc 17715  Ringcrg 20118   RingHom crh 20354  RngCatcrngc 20501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-resc 17718  df-mhm 18657  df-ghm 19092  df-mgp 20026  df-ur 20067  df-ring 20120  df-rhm 20357
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator