MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngcrescrhm Structured version   Visualization version   GIF version

Theorem rngcrescrhm 20599
Description: The category of non-unital rings (in a universe) restricted to the ring homomorphisms between unital rings (in the same universe). (Contributed by AV, 1-Mar-2020.)
Hypotheses
Ref Expression
rngcrescrhm.u (𝜑𝑈𝑉)
rngcrescrhm.c 𝐶 = (RngCat‘𝑈)
rngcrescrhm.r (𝜑𝑅 = (Ring ∩ 𝑈))
rngcrescrhm.h 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
Assertion
Ref Expression
rngcrescrhm (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))

Proof of Theorem rngcrescrhm
StepHypRef Expression
1 eqid 2731 . 2 (𝐶cat 𝐻) = (𝐶cat 𝐻)
2 rngcrescrhm.c . . . 4 𝐶 = (RngCat‘𝑈)
32fvexi 6836 . . 3 𝐶 ∈ V
43a1i 11 . 2 (𝜑𝐶 ∈ V)
5 rngcrescrhm.r . . . 4 (𝜑𝑅 = (Ring ∩ 𝑈))
6 incom 4156 . . . 4 (Ring ∩ 𝑈) = (𝑈 ∩ Ring)
75, 6eqtrdi 2782 . . 3 (𝜑𝑅 = (𝑈 ∩ Ring))
8 rngcrescrhm.u . . . 4 (𝜑𝑈𝑉)
9 inex1g 5255 . . . 4 (𝑈𝑉 → (𝑈 ∩ Ring) ∈ V)
108, 9syl 17 . . 3 (𝜑 → (𝑈 ∩ Ring) ∈ V)
117, 10eqeltrd 2831 . 2 (𝜑𝑅 ∈ V)
12 inss1 4184 . . . . . 6 (Ring ∩ 𝑈) ⊆ Ring
135, 12eqsstrdi 3974 . . . . 5 (𝜑𝑅 ⊆ Ring)
14 xpss12 5629 . . . . 5 ((𝑅 ⊆ Ring ∧ 𝑅 ⊆ Ring) → (𝑅 × 𝑅) ⊆ (Ring × Ring))
1513, 13, 14syl2anc 584 . . . 4 (𝜑 → (𝑅 × 𝑅) ⊆ (Ring × Ring))
16 rhmfn 20414 . . . . 5 RingHom Fn (Ring × Ring)
17 fnssresb 6603 . . . . 5 ( RingHom Fn (Ring × Ring) → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1816, 17mp1i 13 . . . 4 (𝜑 → (( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅) ↔ (𝑅 × 𝑅) ⊆ (Ring × Ring)))
1915, 18mpbird 257 . . 3 (𝜑 → ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
20 rngcrescrhm.h . . . 4 𝐻 = ( RingHom ↾ (𝑅 × 𝑅))
2120fneq1i 6578 . . 3 (𝐻 Fn (𝑅 × 𝑅) ↔ ( RingHom ↾ (𝑅 × 𝑅)) Fn (𝑅 × 𝑅))
2219, 21sylibr 234 . 2 (𝜑𝐻 Fn (𝑅 × 𝑅))
231, 4, 11, 22rescval2 17735 1 (𝜑 → (𝐶cat 𝐻) = ((𝐶s 𝑅) sSet ⟨(Hom ‘ndx), 𝐻⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  Vcvv 3436  cin 3896  wss 3897  cop 4579   × cxp 5612  cres 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346   sSet csts 17074  ndxcnx 17104  s cress 17141  Hom chom 17172  cat cresc 17715  Ringcrg 20151   RingHom crh 20387  RngCatcrngc 20531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-resc 17718  df-mhm 18691  df-ghm 19125  df-mgp 20059  df-ur 20100  df-ring 20153  df-rhm 20390
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator