![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyreres | Structured version Visualization version GIF version |
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
plyreres | β’ (πΉ β (Polyββ) β (πΉ βΎ β):ββΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plybss 25932 | . . 3 β’ (πΉ β (Polyββ) β β β β) | |
2 | plyf 25936 | . . . 4 β’ (πΉ β (Polyββ) β πΉ:ββΆβ) | |
3 | ffn 6717 | . . . 4 β’ (πΉ:ββΆβ β πΉ Fn β) | |
4 | fnssresb 6672 | . . . 4 β’ (πΉ Fn β β ((πΉ βΎ β) Fn β β β β β)) | |
5 | 2, 3, 4 | 3syl 18 | . . 3 β’ (πΉ β (Polyββ) β ((πΉ βΎ β) Fn β β β β β)) |
6 | 1, 5 | mpbird 256 | . 2 β’ (πΉ β (Polyββ) β (πΉ βΎ β) Fn β) |
7 | fvres 6910 | . . . . . 6 β’ (π β β β ((πΉ βΎ β)βπ) = (πΉβπ)) | |
8 | 7 | adantl 482 | . . . . 5 β’ ((πΉ β (Polyββ) β§ π β β) β ((πΉ βΎ β)βπ) = (πΉβπ)) |
9 | recn 11202 | . . . . . . 7 β’ (π β β β π β β) | |
10 | ffvelcdm 7083 | . . . . . . 7 β’ ((πΉ:ββΆβ β§ π β β) β (πΉβπ) β β) | |
11 | 2, 9, 10 | syl2an 596 | . . . . . 6 β’ ((πΉ β (Polyββ) β§ π β β) β (πΉβπ) β β) |
12 | plyrecj 26017 | . . . . . . . 8 β’ ((πΉ β (Polyββ) β§ π β β) β (ββ(πΉβπ)) = (πΉβ(ββπ))) | |
13 | 9, 12 | sylan2 593 | . . . . . . 7 β’ ((πΉ β (Polyββ) β§ π β β) β (ββ(πΉβπ)) = (πΉβ(ββπ))) |
14 | cjre 15090 | . . . . . . . . 9 β’ (π β β β (ββπ) = π) | |
15 | 14 | adantl 482 | . . . . . . . 8 β’ ((πΉ β (Polyββ) β§ π β β) β (ββπ) = π) |
16 | 15 | fveq2d 6895 | . . . . . . 7 β’ ((πΉ β (Polyββ) β§ π β β) β (πΉβ(ββπ)) = (πΉβπ)) |
17 | 13, 16 | eqtrd 2772 | . . . . . 6 β’ ((πΉ β (Polyββ) β§ π β β) β (ββ(πΉβπ)) = (πΉβπ)) |
18 | 11, 17 | cjrebd 15153 | . . . . 5 β’ ((πΉ β (Polyββ) β§ π β β) β (πΉβπ) β β) |
19 | 8, 18 | eqeltrd 2833 | . . . 4 β’ ((πΉ β (Polyββ) β§ π β β) β ((πΉ βΎ β)βπ) β β) |
20 | 19 | ralrimiva 3146 | . . 3 β’ (πΉ β (Polyββ) β βπ β β ((πΉ βΎ β)βπ) β β) |
21 | fnfvrnss 7122 | . . 3 β’ (((πΉ βΎ β) Fn β β§ βπ β β ((πΉ βΎ β)βπ) β β) β ran (πΉ βΎ β) β β) | |
22 | 6, 20, 21 | syl2anc 584 | . 2 β’ (πΉ β (Polyββ) β ran (πΉ βΎ β) β β) |
23 | df-f 6547 | . 2 β’ ((πΉ βΎ β):ββΆβ β ((πΉ βΎ β) Fn β β§ ran (πΉ βΎ β) β β)) | |
24 | 6, 22, 23 | sylanbrc 583 | 1 β’ (πΉ β (Polyββ) β (πΉ βΎ β):ββΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 βwral 3061 β wss 3948 ran crn 5677 βΎ cres 5678 Fn wfn 6538 βΆwf 6539 βcfv 6543 βcc 11110 βcr 11111 βccj 15047 Polycply 25922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-of 7672 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-n0 12477 df-z 12563 df-uz 12827 df-rp 12979 df-fz 13489 df-fzo 13632 df-fl 13761 df-seq 13971 df-exp 14032 df-hash 14295 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-0p 25411 df-ply 25926 df-coe 25928 df-dgr 25929 |
This theorem is referenced by: aalioulem3 26071 taylthlem2 26110 plyrecld 33846 |
Copyright terms: Public domain | W3C validator |