![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyreres | Structured version Visualization version GIF version |
Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
Ref | Expression |
---|---|
plyreres | ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plybss 26048 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ℝ ⊆ ℂ) | |
2 | plyf 26052 | . . . 4 ⊢ (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ) | |
3 | ffn 6707 | . . . 4 ⊢ (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ) | |
4 | fnssresb 6662 | . . . 4 ⊢ (𝐹 Fn ℂ → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) | |
5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) |
6 | 1, 5 | mpbird 257 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ) Fn ℝ) |
7 | fvres 6900 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) | |
8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) |
9 | recn 11196 | . . . . . . 7 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℂ) | |
10 | ffvelcdm 7073 | . . . . . . 7 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) ∈ ℂ) | |
11 | 2, 9, 10 | syl2an 595 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℂ) |
12 | plyrecj 26134 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℂ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) | |
13 | 9, 12 | sylan2 592 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) |
14 | cjre 15083 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℝ → (∗‘𝑎) = 𝑎) | |
15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘𝑎) = 𝑎) |
16 | 15 | fveq2d 6885 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘(∗‘𝑎)) = (𝐹‘𝑎)) |
17 | 13, 16 | eqtrd 2764 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘𝑎)) |
18 | 11, 17 | cjrebd 15146 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℝ) |
19 | 8, 18 | eqeltrd 2825 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
20 | 19 | ralrimiva 3138 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
21 | fnfvrnss 7112 | . . 3 ⊢ (((𝐹 ↾ ℝ) Fn ℝ ∧ ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) | |
22 | 6, 20, 21 | syl2anc 583 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) |
23 | df-f 6537 | . 2 ⊢ ((𝐹 ↾ ℝ):ℝ⟶ℝ ↔ ((𝐹 ↾ ℝ) Fn ℝ ∧ ran (𝐹 ↾ ℝ) ⊆ ℝ)) | |
24 | 6, 22, 23 | sylanbrc 582 | 1 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3053 ⊆ wss 3940 ran crn 5667 ↾ cres 5668 Fn wfn 6528 ⟶wf 6529 ‘cfv 6533 ℂcc 11104 ℝcr 11105 ∗ccj 15040 Polycply 26038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-fl 13754 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-rlim 15430 df-sum 15630 df-0p 25521 df-ply 26042 df-coe 26044 df-dgr 26045 |
This theorem is referenced by: aalioulem3 26188 taylthlem2 26227 plyrecld 34049 gg-taylthlem2 35657 |
Copyright terms: Public domain | W3C validator |