| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyreres | Structured version Visualization version GIF version | ||
| Description: Real-coefficient polynomials restrict to real functions. (Contributed by Stefan O'Rear, 16-Nov-2014.) |
| Ref | Expression |
|---|---|
| plyreres | ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plybss 26132 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ℝ ⊆ ℂ) | |
| 2 | plyf 26136 | . . . 4 ⊢ (𝐹 ∈ (Poly‘ℝ) → 𝐹:ℂ⟶ℂ) | |
| 3 | ffn 6657 | . . . 4 ⊢ (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ) | |
| 4 | fnssresb 6609 | . . . 4 ⊢ (𝐹 Fn ℂ → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) | |
| 5 | 2, 3, 4 | 3syl 18 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ((𝐹 ↾ ℝ) Fn ℝ ↔ ℝ ⊆ ℂ)) |
| 6 | 1, 5 | mpbird 257 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ) Fn ℝ) |
| 7 | fvres 6847 | . . . . . 6 ⊢ (𝑎 ∈ ℝ → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) | |
| 8 | 7 | adantl 481 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) = (𝐹‘𝑎)) |
| 9 | recn 11102 | . . . . . . 7 ⊢ (𝑎 ∈ ℝ → 𝑎 ∈ ℂ) | |
| 10 | ffvelcdm 7020 | . . . . . . 7 ⊢ ((𝐹:ℂ⟶ℂ ∧ 𝑎 ∈ ℂ) → (𝐹‘𝑎) ∈ ℂ) | |
| 11 | 2, 9, 10 | syl2an 596 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℂ) |
| 12 | plyrecj 26220 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℂ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) | |
| 13 | 9, 12 | sylan2 593 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘(∗‘𝑎))) |
| 14 | cjre 15052 | . . . . . . . . 9 ⊢ (𝑎 ∈ ℝ → (∗‘𝑎) = 𝑎) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘𝑎) = 𝑎) |
| 16 | 15 | fveq2d 6832 | . . . . . . 7 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘(∗‘𝑎)) = (𝐹‘𝑎)) |
| 17 | 13, 16 | eqtrd 2766 | . . . . . 6 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (∗‘(𝐹‘𝑎)) = (𝐹‘𝑎)) |
| 18 | 11, 17 | cjrebd 15115 | . . . . 5 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → (𝐹‘𝑎) ∈ ℝ) |
| 19 | 8, 18 | eqeltrd 2831 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘ℝ) ∧ 𝑎 ∈ ℝ) → ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
| 20 | 19 | ralrimiva 3124 | . . 3 ⊢ (𝐹 ∈ (Poly‘ℝ) → ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) |
| 21 | fnfvrnss 7060 | . . 3 ⊢ (((𝐹 ↾ ℝ) Fn ℝ ∧ ∀𝑎 ∈ ℝ ((𝐹 ↾ ℝ)‘𝑎) ∈ ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) | |
| 22 | 6, 20, 21 | syl2anc 584 | . 2 ⊢ (𝐹 ∈ (Poly‘ℝ) → ran (𝐹 ↾ ℝ) ⊆ ℝ) |
| 23 | df-f 6491 | . 2 ⊢ ((𝐹 ↾ ℝ):ℝ⟶ℝ ↔ ((𝐹 ↾ ℝ) Fn ℝ ∧ ran (𝐹 ↾ ℝ) ⊆ ℝ)) | |
| 24 | 6, 22, 23 | sylanbrc 583 | 1 ⊢ (𝐹 ∈ (Poly‘ℝ) → (𝐹 ↾ ℝ):ℝ⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3897 ran crn 5620 ↾ cres 5621 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 ℂcc 11010 ℝcr 11011 ∗ccj 15009 Polycply 26122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9537 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-pre-sup 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-n0 12388 df-z 12475 df-uz 12739 df-rp 12897 df-fz 13414 df-fzo 13561 df-fl 13702 df-seq 13915 df-exp 13975 df-hash 14244 df-cj 15012 df-re 15013 df-im 15014 df-sqrt 15148 df-abs 15149 df-clim 15401 df-rlim 15402 df-sum 15600 df-0p 25604 df-ply 26126 df-coe 26128 df-dgr 26129 |
| This theorem is referenced by: aalioulem3 26275 taylthlem2 26315 taylthlem2OLD 26316 plyrecld 34569 |
| Copyright terms: Public domain | W3C validator |