![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem29 | Structured version Visualization version GIF version |
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem29.1 | ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
Ref | Expression |
---|---|
fourierdlem29 | ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2744 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0)) | |
2 | id 22 | . . . 4 ⊢ (𝑠 = 𝐴 → 𝑠 = 𝐴) | |
3 | fvoveq1 7471 | . . . . 5 ⊢ (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2))) | |
4 | 3 | oveq2d 7464 | . . . 4 ⊢ (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2)))) |
5 | 2, 4 | oveq12d 7466 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2))))) |
6 | 1, 5 | ifbieq2d 4574 | . 2 ⊢ (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
7 | fourierdlem29.1 | . 2 ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | |
8 | 1ex 11286 | . . 3 ⊢ 1 ∈ V | |
9 | ovex 7481 | . . 3 ⊢ (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V | |
10 | 8, 9 | ifex 4598 | . 2 ⊢ if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V |
11 | 6, 7, 10 | fvmpt 7029 | 1 ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ifcif 4548 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 · cmul 11189 -cneg 11521 / cdiv 11947 2c2 12348 [,]cicc 13410 sincsin 16111 πcpi 16114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-1cn 11242 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |