Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem29 Structured version   Visualization version   GIF version

Theorem fourierdlem29 46137
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem29.1 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem29 (𝐴 ∈ (-π[,]π) → (𝐾𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem29
StepHypRef Expression
1 eqeq1 2733 . . 3 (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0))
2 id 22 . . . 4 (𝑠 = 𝐴𝑠 = 𝐴)
3 fvoveq1 7376 . . . . 5 (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2)))
43oveq2d 7369 . . . 4 (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2))))
52, 4oveq12d 7371 . . 3 (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2)))))
61, 5ifbieq2d 4505 . 2 (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
7 fourierdlem29.1 . 2 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8 1ex 11130 . . 3 1 ∈ V
9 ovex 7386 . . 3 (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V
108, 9ifex 4529 . 2 if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V
116, 7, 10fvmpt 6934 1 (𝐴 ∈ (-π[,]π) → (𝐾𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  ifcif 4478  cmpt 5176  cfv 6486  (class class class)co 7353  0cc0 11028  1c1 11029   · cmul 11033  -cneg 11367   / cdiv 11796  2c2 12202  [,]cicc 13270  sincsin 15989  πcpi 15992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator