| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem29 | Structured version Visualization version GIF version | ||
| Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| Ref | Expression |
|---|---|
| fourierdlem29.1 | ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
| Ref | Expression |
|---|---|
| fourierdlem29 | ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2740 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0)) | |
| 2 | id 22 | . . . 4 ⊢ (𝑠 = 𝐴 → 𝑠 = 𝐴) | |
| 3 | fvoveq1 7433 | . . . . 5 ⊢ (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2))) | |
| 4 | 3 | oveq2d 7426 | . . . 4 ⊢ (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2)))) |
| 5 | 2, 4 | oveq12d 7428 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2))))) |
| 6 | 1, 5 | ifbieq2d 4532 | . 2 ⊢ (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
| 7 | fourierdlem29.1 | . 2 ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | |
| 8 | 1ex 11236 | . . 3 ⊢ 1 ∈ V | |
| 9 | ovex 7443 | . . 3 ⊢ (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V | |
| 10 | 8, 9 | ifex 4556 | . 2 ⊢ if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V |
| 11 | 6, 7, 10 | fvmpt 6991 | 1 ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ifcif 4505 ↦ cmpt 5206 ‘cfv 6536 (class class class)co 7410 0cc0 11134 1c1 11135 · cmul 11139 -cneg 11472 / cdiv 11899 2c2 12300 [,]cicc 13370 sincsin 16084 πcpi 16087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-1cn 11192 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |