![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem29 | Structured version Visualization version GIF version |
Description: Explicit function value for πΎ applied to π΄. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem29.1 | β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) |
Ref | Expression |
---|---|
fourierdlem29 | β’ (π΄ β (-Ο[,]Ο) β (πΎβπ΄) = if(π΄ = 0, 1, (π΄ / (2 Β· (sinβ(π΄ / 2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2731 | . . 3 β’ (π = π΄ β (π = 0 β π΄ = 0)) | |
2 | id 22 | . . . 4 β’ (π = π΄ β π = π΄) | |
3 | fvoveq1 7437 | . . . . 5 β’ (π = π΄ β (sinβ(π / 2)) = (sinβ(π΄ / 2))) | |
4 | 3 | oveq2d 7430 | . . . 4 β’ (π = π΄ β (2 Β· (sinβ(π / 2))) = (2 Β· (sinβ(π΄ / 2)))) |
5 | 2, 4 | oveq12d 7432 | . . 3 β’ (π = π΄ β (π / (2 Β· (sinβ(π / 2)))) = (π΄ / (2 Β· (sinβ(π΄ / 2))))) |
6 | 1, 5 | ifbieq2d 4550 | . 2 β’ (π = π΄ β if(π = 0, 1, (π / (2 Β· (sinβ(π / 2))))) = if(π΄ = 0, 1, (π΄ / (2 Β· (sinβ(π΄ / 2)))))) |
7 | fourierdlem29.1 | . 2 β’ πΎ = (π β (-Ο[,]Ο) β¦ if(π = 0, 1, (π / (2 Β· (sinβ(π / 2)))))) | |
8 | 1ex 11226 | . . 3 β’ 1 β V | |
9 | ovex 7447 | . . 3 β’ (π΄ / (2 Β· (sinβ(π΄ / 2)))) β V | |
10 | 8, 9 | ifex 4574 | . 2 β’ if(π΄ = 0, 1, (π΄ / (2 Β· (sinβ(π΄ / 2))))) β V |
11 | 6, 7, 10 | fvmpt 6999 | 1 β’ (π΄ β (-Ο[,]Ο) β (πΎβπ΄) = if(π΄ = 0, 1, (π΄ / (2 Β· (sinβ(π΄ / 2)))))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1534 β wcel 2099 ifcif 4524 β¦ cmpt 5225 βcfv 6542 (class class class)co 7414 0cc0 11124 1c1 11125 Β· cmul 11129 -cneg 11461 / cdiv 11887 2c2 12283 [,]cicc 13345 sincsin 16025 Οcpi 16028 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-1cn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |