Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem29 Structured version   Visualization version   GIF version

Theorem fourierdlem29 46296
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem29.1 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem29 (𝐴 ∈ (-π[,]π) → (𝐾𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem29
StepHypRef Expression
1 eqeq1 2737 . . 3 (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0))
2 id 22 . . . 4 (𝑠 = 𝐴𝑠 = 𝐴)
3 fvoveq1 7378 . . . . 5 (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2)))
43oveq2d 7371 . . . 4 (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2))))
52, 4oveq12d 7373 . . 3 (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2)))))
61, 5ifbieq2d 4503 . 2 (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
7 fourierdlem29.1 . 2 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))
8 1ex 11119 . . 3 1 ∈ V
9 ovex 7388 . . 3 (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V
108, 9ifex 4527 . 2 if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V
116, 7, 10fvmpt 6938 1 (𝐴 ∈ (-π[,]π) → (𝐾𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  ifcif 4476  cmpt 5176  cfv 6489  (class class class)co 7355  0cc0 11017  1c1 11018   · cmul 11022  -cneg 11356   / cdiv 11785  2c2 12191  [,]cicc 13255  sincsin 15977  πcpi 15980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-1cn 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator