Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem29 | Structured version Visualization version GIF version |
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem29.1 | ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
Ref | Expression |
---|---|
fourierdlem29 | ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0)) | |
2 | id 22 | . . . 4 ⊢ (𝑠 = 𝐴 → 𝑠 = 𝐴) | |
3 | fvoveq1 7278 | . . . . 5 ⊢ (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2))) | |
4 | 3 | oveq2d 7271 | . . . 4 ⊢ (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2)))) |
5 | 2, 4 | oveq12d 7273 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2))))) |
6 | 1, 5 | ifbieq2d 4482 | . 2 ⊢ (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
7 | fourierdlem29.1 | . 2 ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | |
8 | 1ex 10902 | . . 3 ⊢ 1 ∈ V | |
9 | ovex 7288 | . . 3 ⊢ (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V | |
10 | 8, 9 | ifex 4506 | . 2 ⊢ if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V |
11 | 6, 7, 10 | fvmpt 6857 | 1 ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ifcif 4456 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 · cmul 10807 -cneg 11136 / cdiv 11562 2c2 11958 [,]cicc 13011 sincsin 15701 πcpi 15704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-1cn 10860 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |