Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fourierdlem29 | Structured version Visualization version GIF version |
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
fourierdlem29.1 | ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) |
Ref | Expression |
---|---|
fourierdlem29 | ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 = 0 ↔ 𝐴 = 0)) | |
2 | id 22 | . . . 4 ⊢ (𝑠 = 𝐴 → 𝑠 = 𝐴) | |
3 | fvoveq1 7298 | . . . . 5 ⊢ (𝑠 = 𝐴 → (sin‘(𝑠 / 2)) = (sin‘(𝐴 / 2))) | |
4 | 3 | oveq2d 7291 | . . . 4 ⊢ (𝑠 = 𝐴 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝐴 / 2)))) |
5 | 2, 4 | oveq12d 7293 | . . 3 ⊢ (𝑠 = 𝐴 → (𝑠 / (2 · (sin‘(𝑠 / 2)))) = (𝐴 / (2 · (sin‘(𝐴 / 2))))) |
6 | 1, 5 | ifbieq2d 4485 | . 2 ⊢ (𝑠 = 𝐴 → if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
7 | fourierdlem29.1 | . 2 ⊢ 𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2)))))) | |
8 | 1ex 10971 | . . 3 ⊢ 1 ∈ V | |
9 | ovex 7308 | . . 3 ⊢ (𝐴 / (2 · (sin‘(𝐴 / 2)))) ∈ V | |
10 | 8, 9 | ifex 4509 | . 2 ⊢ if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2))))) ∈ V |
11 | 6, 7, 10 | fvmpt 6875 | 1 ⊢ (𝐴 ∈ (-π[,]π) → (𝐾‘𝐴) = if(𝐴 = 0, 1, (𝐴 / (2 · (sin‘(𝐴 / 2)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ifcif 4459 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 · cmul 10876 -cneg 11206 / cdiv 11632 2c2 12028 [,]cicc 13082 sincsin 15773 πcpi 15776 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |