Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem29 Structured version   Visualization version   GIF version

Theorem fourierdlem29 45437
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem29.1 𝐾 = (𝑠 ∈ (-Ο€[,]Ο€) ↦ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem29 (𝐴 ∈ (-Ο€[,]Ο€) β†’ (πΎβ€˜π΄) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem29
StepHypRef Expression
1 eqeq1 2731 . . 3 (𝑠 = 𝐴 β†’ (𝑠 = 0 ↔ 𝐴 = 0))
2 id 22 . . . 4 (𝑠 = 𝐴 β†’ 𝑠 = 𝐴)
3 fvoveq1 7437 . . . . 5 (𝑠 = 𝐴 β†’ (sinβ€˜(𝑠 / 2)) = (sinβ€˜(𝐴 / 2)))
43oveq2d 7430 . . . 4 (𝑠 = 𝐴 β†’ (2 Β· (sinβ€˜(𝑠 / 2))) = (2 Β· (sinβ€˜(𝐴 / 2))))
52, 4oveq12d 7432 . . 3 (𝑠 = 𝐴 β†’ (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2)))) = (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2)))))
61, 5ifbieq2d 4550 . 2 (𝑠 = 𝐴 β†’ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
7 fourierdlem29.1 . 2 𝐾 = (𝑠 ∈ (-Ο€[,]Ο€) ↦ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))))
8 1ex 11226 . . 3 1 ∈ V
9 ovex 7447 . . 3 (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2)))) ∈ V
108, 9ifex 4574 . 2 if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))) ∈ V
116, 7, 10fvmpt 6999 1 (𝐴 ∈ (-Ο€[,]Ο€) β†’ (πΎβ€˜π΄) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1534   ∈ wcel 2099  ifcif 4524   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414  0cc0 11124  1c1 11125   Β· cmul 11129  -cneg 11461   / cdiv 11887  2c2 12283  [,]cicc 13345  sincsin 16025  Ο€cpi 16028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-1cn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6494  df-fun 6544  df-fv 6550  df-ov 7417
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator