Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem29 Structured version   Visualization version   GIF version

Theorem fourierdlem29 44852
Description: Explicit function value for 𝐾 applied to 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypothesis
Ref Expression
fourierdlem29.1 𝐾 = (𝑠 ∈ (-Ο€[,]Ο€) ↦ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))))
Assertion
Ref Expression
fourierdlem29 (𝐴 ∈ (-Ο€[,]Ο€) β†’ (πΎβ€˜π΄) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
Distinct variable group:   𝐴,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem fourierdlem29
StepHypRef Expression
1 eqeq1 2737 . . 3 (𝑠 = 𝐴 β†’ (𝑠 = 0 ↔ 𝐴 = 0))
2 id 22 . . . 4 (𝑠 = 𝐴 β†’ 𝑠 = 𝐴)
3 fvoveq1 7432 . . . . 5 (𝑠 = 𝐴 β†’ (sinβ€˜(𝑠 / 2)) = (sinβ€˜(𝐴 / 2)))
43oveq2d 7425 . . . 4 (𝑠 = 𝐴 β†’ (2 Β· (sinβ€˜(𝑠 / 2))) = (2 Β· (sinβ€˜(𝐴 / 2))))
52, 4oveq12d 7427 . . 3 (𝑠 = 𝐴 β†’ (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2)))) = (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2)))))
61, 5ifbieq2d 4555 . 2 (𝑠 = 𝐴 β†’ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
7 fourierdlem29.1 . 2 𝐾 = (𝑠 ∈ (-Ο€[,]Ο€) ↦ if(𝑠 = 0, 1, (𝑠 / (2 Β· (sinβ€˜(𝑠 / 2))))))
8 1ex 11210 . . 3 1 ∈ V
9 ovex 7442 . . 3 (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2)))) ∈ V
108, 9ifex 4579 . 2 if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))) ∈ V
116, 7, 10fvmpt 6999 1 (𝐴 ∈ (-Ο€[,]Ο€) β†’ (πΎβ€˜π΄) = if(𝐴 = 0, 1, (𝐴 / (2 Β· (sinβ€˜(𝐴 / 2))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1542   ∈ wcel 2107  ifcif 4529   ↦ cmpt 5232  β€˜cfv 6544  (class class class)co 7409  0cc0 11110  1c1 11111   Β· cmul 11115  -cneg 11445   / cdiv 11871  2c2 12267  [,]cicc 13327  sincsin 16007  Ο€cpi 16010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-1cn 11168
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator