Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem30 Structured version   Visualization version   GIF version

Theorem fourierdlem30 46058
Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem30.ibl (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierlemreimleblemlte22.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem30.g ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
fourierdlem30.a (𝜑𝐴 ∈ ℂ)
fourierdlem30.x 𝑋 = (abs‘𝐴)
fourierdlem30.c (𝜑𝐶 ∈ ℂ)
fourierdlem30.y 𝑌 = (abs‘𝐶)
fourierdlem30.z 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
fourierdlem30.e (𝜑𝐸 ∈ ℝ+)
fourierdlem30.r (𝜑𝑅 ∈ ℝ)
fourierdlem30.ler (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
fourierdlem30.b (𝜑𝐵 ∈ ℂ)
fourierdlem30.12 (𝜑 → (abs‘𝐵) ≤ 1)
fourierdlem30.d (𝜑𝐷 ∈ ℂ)
fourierdlem30.14 (𝜑 → (abs‘𝐷) ≤ 1)
Assertion
Ref Expression
fourierdlem30 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fourierdlem30
StepHypRef Expression
1 fourierdlem30.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2 fourierdlem30.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
32recnd 11318 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
4 0red 11293 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
5 1red 11291 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
6 0lt1 11812 . . . . . . . . . . . . . 14 0 < 1
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
8 fourierdlem30.x . . . . . . . . . . . . . . . . . . 19 𝑋 = (abs‘𝐴)
9 fourierdlem30.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℂ)
109abscld 15485 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrid 2848 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
12 fourierdlem30.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (abs‘𝐶)
13 fourierdlem30.c . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ℂ)
1413abscld 15485 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
1512, 14eqeltrid 2848 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
1611, 15readdcld 11319 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
17 fourierdlem30.z . . . . . . . . . . . . . . . . . 18 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
18 fourierlemreimleblemlte22.f . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
19 fourierdlem30.g . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
2019negcld 11634 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → -𝐺 ∈ ℂ)
2118, 20mulcld 11310 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
22 fourierdlem30.ibl . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
2321, 22itgcl 25839 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
2423abscld 15485 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
2517, 24eqeltrid 2848 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
2616, 25readdcld 11319 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
27 fourierdlem30.e . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℝ+)
2827rpred 13099 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℝ)
2927rpne0d 13104 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ≠ 0)
3026, 28, 29redivcld 12122 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
3130, 5readdcld 11319 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
329absge0d 15493 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐴))
3332, 8breqtrrdi 5208 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑋)
3413absge0d 15493 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐶))
3534, 12breqtrrdi 5208 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
3611, 15, 33, 35addge0d 11866 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3723absge0d 15493 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
3837, 17breqtrrdi 5208 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑍)
3916, 25, 36, 38addge0d 11866 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4026, 27, 39divge0d 13139 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
415, 30addge02d 11879 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸) ↔ 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
4240, 41mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
43 fourierdlem30.ler . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
445, 31, 2, 42, 43letrd 11447 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑅)
454, 5, 2, 7, 44ltletrd 11450 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑅)
4645gt0ne0d 11854 . . . . . . . . . . 11 (𝜑𝑅 ≠ 0)
471, 3, 46divnegd 12083 . . . . . . . . . 10 (𝜑 → -(𝐵 / 𝑅) = (-𝐵 / 𝑅))
4847oveq2d 7464 . . . . . . . . 9 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = (𝐴 · (-𝐵 / 𝑅)))
491negcld 11634 . . . . . . . . . 10 (𝜑 → -𝐵 ∈ ℂ)
509, 49, 3, 46divassd 12105 . . . . . . . . 9 (𝜑 → ((𝐴 · -𝐵) / 𝑅) = (𝐴 · (-𝐵 / 𝑅)))
5148, 50eqtr4d 2783 . . . . . . . 8 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = ((𝐴 · -𝐵) / 𝑅))
52 fourierdlem30.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
5352, 3, 46divnegd 12083 . . . . . . . . . 10 (𝜑 → -(𝐷 / 𝑅) = (-𝐷 / 𝑅))
5453oveq2d 7464 . . . . . . . . 9 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = (𝐶 · (-𝐷 / 𝑅)))
5552negcld 11634 . . . . . . . . . 10 (𝜑 → -𝐷 ∈ ℂ)
5613, 55, 3, 46divassd 12105 . . . . . . . . 9 (𝜑 → ((𝐶 · -𝐷) / 𝑅) = (𝐶 · (-𝐷 / 𝑅)))
5754, 56eqtr4d 2783 . . . . . . . 8 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = ((𝐶 · -𝐷) / 𝑅))
5851, 57oveq12d 7466 . . . . . . 7 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
599, 49mulcld 11310 . . . . . . . 8 (𝜑 → (𝐴 · -𝐵) ∈ ℂ)
6013, 55mulcld 11310 . . . . . . . 8 (𝜑 → (𝐶 · -𝐷) ∈ ℂ)
6159, 60, 3, 46divsubdird 12109 . . . . . . 7 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
6258, 61eqtr4d 2783 . . . . . 6 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅))
633, 46reccld 12063 . . . . . . . 8 (𝜑 → (1 / 𝑅) ∈ ℂ)
6463, 21, 22itgmulc2 25889 . . . . . . 7 (𝜑 → ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥) = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
6523, 3, 46divrec2d 12074 . . . . . . 7 (𝜑 → (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅) = ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥))
663adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ∈ ℂ)
6746adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ≠ 0)
6819, 66, 67divnegd 12083 . . . . . . . . . 10 ((𝜑𝑥𝐼) → -(𝐺 / 𝑅) = (-𝐺 / 𝑅))
6968oveq2d 7464 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = (𝐹 · (-𝐺 / 𝑅)))
7018, 20, 66, 67divassd 12105 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = (𝐹 · (-𝐺 / 𝑅)))
7121, 66, 67divrec2d 12074 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7269, 70, 713eqtr2d 2786 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7372itgeq2dv 25837 . . . . . . 7 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
7464, 65, 733eqtr4rd 2791 . . . . . 6 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅))
7562, 74oveq12d 7466 . . . . 5 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7659, 60subcld 11647 . . . . . 6 (𝜑 → ((𝐴 · -𝐵) − (𝐶 · -𝐷)) ∈ ℂ)
7776, 23, 3, 46divsubdird 12109 . . . . 5 (𝜑 → ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7875, 77eqtr4d 2783 . . . 4 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅))
7978fveq2d 6924 . . 3 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)))
8076, 23subcld 11647 . . . 4 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℂ)
8180, 3, 46absdivd 15504 . . 3 (𝜑 → (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)))
824, 2, 45ltled 11438 . . . . 5 (𝜑 → 0 ≤ 𝑅)
832, 82absidd 15471 . . . 4 (𝜑 → (abs‘𝑅) = 𝑅)
8483oveq2d 7464 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8579, 81, 843eqtrd 2784 . 2 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8680abscld 15485 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8786, 2, 46redivcld 12122 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
8810, 14readdcld 11319 . . . . 5 (𝜑 → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8988, 24readdcld 11319 . . . 4 (𝜑 → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9089, 2, 46redivcld 12122 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
912, 45elrpd 13096 . . . 4 (𝜑𝑅 ∈ ℝ+)
9276abscld 15485 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ∈ ℝ)
9392, 24readdcld 11319 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9476, 23abs2dif2d 15507 . . . . 5 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
9559abscld 15485 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ∈ ℝ)
9660abscld 15485 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ∈ ℝ)
9795, 96readdcld 11319 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ∈ ℝ)
9859, 60abs2dif2d 15507 . . . . . . 7 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))))
999, 49absmuld 15503 . . . . . . . . 9 (𝜑 → (abs‘(𝐴 · -𝐵)) = ((abs‘𝐴) · (abs‘-𝐵)))
10049abscld 15485 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ∈ ℝ)
1011absnegd 15498 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐵) = (abs‘𝐵))
102 fourierdlem30.12 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐵) ≤ 1)
103101, 102eqbrtrd 5188 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ≤ 1)
104100, 5, 10, 32, 103lemul2ad 12235 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ ((abs‘𝐴) · 1))
10510recnd 11318 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℂ)
106105mulridd 11307 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
107104, 106breqtrd 5192 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ (abs‘𝐴))
10899, 107eqbrtrd 5188 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ≤ (abs‘𝐴))
10913, 55absmuld 15503 . . . . . . . . 9 (𝜑 → (abs‘(𝐶 · -𝐷)) = ((abs‘𝐶) · (abs‘-𝐷)))
11055abscld 15485 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ∈ ℝ)
11152absnegd 15498 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐷) = (abs‘𝐷))
112 fourierdlem30.14 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐷) ≤ 1)
113111, 112eqbrtrd 5188 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ≤ 1)
114110, 5, 14, 34, 113lemul2ad 12235 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ ((abs‘𝐶) · 1))
11514recnd 11318 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℂ)
116115mulridd 11307 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · 1) = (abs‘𝐶))
117114, 116breqtrd 5192 . . . . . . . . 9 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ (abs‘𝐶))
118109, 117eqbrtrd 5188 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ≤ (abs‘𝐶))
11995, 96, 10, 14, 108, 118le2addd 11909 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12092, 97, 88, 98, 119letrd 11447 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12192, 88, 24, 120leadd1dd 11904 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12286, 93, 89, 94, 121letrd 11447 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12386, 89, 91, 122lediv1dd 13157 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
12430ltp1d 12225 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
1254, 30, 31, 40, 124lelttrd 11448 . . . . . 6 (𝜑 → 0 < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
126125gt0ne0d 11854 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
12789, 31, 126redivcld 12122 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
12830, 40ge0p1rpd 13129 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
1298eqcomi 2749 . . . . . . . 8 (abs‘𝐴) = 𝑋
13012eqcomi 2749 . . . . . . . 8 (abs‘𝐶) = 𝑌
131129, 130oveq12i 7460 . . . . . . 7 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
13217eqcomi 2749 . . . . . . 7 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = 𝑍
133131, 132oveq12i 7460 . . . . . 6 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + 𝑍)
13439, 133breqtrrdi 5208 . . . . 5 (𝜑 → 0 ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
135128, 91, 89, 134, 43lediv2ad 13121 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
136133oveq1i 7458 . . . . 5 ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
137 oveq1 7455 . . . . . . . . 9 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
138137adantl 481 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13930recnd 11318 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℂ)
1405recnd 11318 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
141139, 140addcld 11309 . . . . . . . . . 10 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
142141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
143 oveq1 7455 . . . . . . . . . . . . . 14 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
14527rpcnd 13101 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
146145adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℂ)
14729adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ≠ 0)
148146, 147div0d 12069 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / 𝐸) = 0)
149144, 148eqtrd 2780 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = 0)
150149oveq1d 7463 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = (0 + 1))
151 0p1e1 12415 . . . . . . . . . . 11 (0 + 1) = 1
152150, 151eqtrdi 2796 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = 1)
153 ax-1ne0 11253 . . . . . . . . . . 11 1 ≠ 0
154153a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ≠ 0)
155152, 154eqnetrd 3014 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
156142, 155div0d 12069 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
157138, 156eqtrd 2780 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
15827rpgt0d 13102 . . . . . . . 8 (𝜑 → 0 < 𝐸)
159158adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < 𝐸)
160157, 159eqbrtrd 5188 . . . . . 6 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
16126adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
16227adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℝ+)
16339adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
164 neqne 2954 . . . . . . . . . . . 12 (¬ ((𝑋 + 𝑌) + 𝑍) = 0 → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
165164adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
166161, 163, 165ne0gt0d 11427 . . . . . . . . . 10 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < ((𝑋 + 𝑌) + 𝑍))
167161, 166elrpd 13096 . . . . . . . . 9 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ+)
168167, 162rpdivcld 13116 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ+)
169 1rp 13061 . . . . . . . . 9 1 ∈ ℝ+
170169a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ∈ ℝ+)
171168, 170rpaddcld 13114 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
172124adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
173161, 162, 171, 172ltdiv23d 13166 . . . . . 6 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
174160, 173pm2.61dan 812 . . . . 5 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
175136, 174eqbrtrid 5201 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
17690, 127, 28, 135, 175lelttrd 11448 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17787, 90, 28, 123, 176lelttrd 11448 . 2 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17885, 177eqbrtrd 5188 1 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cmpt 5249  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  +crp 13057  abscabs 15283  𝐿1cibl 25671  citg 25672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-itg 25677  df-0p 25724
This theorem is referenced by:  fourierdlem47  46074
  Copyright terms: Public domain W3C validator