Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem30 Structured version   Visualization version   GIF version

Theorem fourierdlem30 46109
Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem30.ibl (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierlemreimleblemlte22.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem30.g ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
fourierdlem30.a (𝜑𝐴 ∈ ℂ)
fourierdlem30.x 𝑋 = (abs‘𝐴)
fourierdlem30.c (𝜑𝐶 ∈ ℂ)
fourierdlem30.y 𝑌 = (abs‘𝐶)
fourierdlem30.z 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
fourierdlem30.e (𝜑𝐸 ∈ ℝ+)
fourierdlem30.r (𝜑𝑅 ∈ ℝ)
fourierdlem30.ler (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
fourierdlem30.b (𝜑𝐵 ∈ ℂ)
fourierdlem30.12 (𝜑 → (abs‘𝐵) ≤ 1)
fourierdlem30.d (𝜑𝐷 ∈ ℂ)
fourierdlem30.14 (𝜑 → (abs‘𝐷) ≤ 1)
Assertion
Ref Expression
fourierdlem30 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fourierdlem30
StepHypRef Expression
1 fourierdlem30.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2 fourierdlem30.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
32recnd 11271 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
4 0red 11246 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
5 1red 11244 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
6 0lt1 11767 . . . . . . . . . . . . . 14 0 < 1
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
8 fourierdlem30.x . . . . . . . . . . . . . . . . . . 19 𝑋 = (abs‘𝐴)
9 fourierdlem30.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℂ)
109abscld 15457 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrid 2837 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
12 fourierdlem30.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (abs‘𝐶)
13 fourierdlem30.c . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ℂ)
1413abscld 15457 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
1512, 14eqeltrid 2837 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
1611, 15readdcld 11272 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
17 fourierdlem30.z . . . . . . . . . . . . . . . . . 18 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
18 fourierlemreimleblemlte22.f . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
19 fourierdlem30.g . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
2019negcld 11589 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → -𝐺 ∈ ℂ)
2118, 20mulcld 11263 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
22 fourierdlem30.ibl . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
2321, 22itgcl 25755 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
2423abscld 15457 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
2517, 24eqeltrid 2837 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
2616, 25readdcld 11272 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
27 fourierdlem30.e . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℝ+)
2827rpred 13059 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℝ)
2927rpne0d 13064 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ≠ 0)
3026, 28, 29redivcld 12077 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
3130, 5readdcld 11272 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
329absge0d 15465 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐴))
3332, 8breqtrrdi 5165 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑋)
3413absge0d 15465 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐶))
3534, 12breqtrrdi 5165 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
3611, 15, 33, 35addge0d 11821 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3723absge0d 15465 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
3837, 17breqtrrdi 5165 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑍)
3916, 25, 36, 38addge0d 11821 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4026, 27, 39divge0d 13099 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
415, 30addge02d 11834 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸) ↔ 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
4240, 41mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
43 fourierdlem30.ler . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
445, 31, 2, 42, 43letrd 11400 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑅)
454, 5, 2, 7, 44ltletrd 11403 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑅)
4645gt0ne0d 11809 . . . . . . . . . . 11 (𝜑𝑅 ≠ 0)
471, 3, 46divnegd 12038 . . . . . . . . . 10 (𝜑 → -(𝐵 / 𝑅) = (-𝐵 / 𝑅))
4847oveq2d 7429 . . . . . . . . 9 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = (𝐴 · (-𝐵 / 𝑅)))
491negcld 11589 . . . . . . . . . 10 (𝜑 → -𝐵 ∈ ℂ)
509, 49, 3, 46divassd 12060 . . . . . . . . 9 (𝜑 → ((𝐴 · -𝐵) / 𝑅) = (𝐴 · (-𝐵 / 𝑅)))
5148, 50eqtr4d 2772 . . . . . . . 8 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = ((𝐴 · -𝐵) / 𝑅))
52 fourierdlem30.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
5352, 3, 46divnegd 12038 . . . . . . . . . 10 (𝜑 → -(𝐷 / 𝑅) = (-𝐷 / 𝑅))
5453oveq2d 7429 . . . . . . . . 9 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = (𝐶 · (-𝐷 / 𝑅)))
5552negcld 11589 . . . . . . . . . 10 (𝜑 → -𝐷 ∈ ℂ)
5613, 55, 3, 46divassd 12060 . . . . . . . . 9 (𝜑 → ((𝐶 · -𝐷) / 𝑅) = (𝐶 · (-𝐷 / 𝑅)))
5754, 56eqtr4d 2772 . . . . . . . 8 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = ((𝐶 · -𝐷) / 𝑅))
5851, 57oveq12d 7431 . . . . . . 7 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
599, 49mulcld 11263 . . . . . . . 8 (𝜑 → (𝐴 · -𝐵) ∈ ℂ)
6013, 55mulcld 11263 . . . . . . . 8 (𝜑 → (𝐶 · -𝐷) ∈ ℂ)
6159, 60, 3, 46divsubdird 12064 . . . . . . 7 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
6258, 61eqtr4d 2772 . . . . . 6 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅))
633, 46reccld 12018 . . . . . . . 8 (𝜑 → (1 / 𝑅) ∈ ℂ)
6463, 21, 22itgmulc2 25805 . . . . . . 7 (𝜑 → ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥) = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
6523, 3, 46divrec2d 12029 . . . . . . 7 (𝜑 → (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅) = ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥))
663adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ∈ ℂ)
6746adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ≠ 0)
6819, 66, 67divnegd 12038 . . . . . . . . . 10 ((𝜑𝑥𝐼) → -(𝐺 / 𝑅) = (-𝐺 / 𝑅))
6968oveq2d 7429 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = (𝐹 · (-𝐺 / 𝑅)))
7018, 20, 66, 67divassd 12060 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = (𝐹 · (-𝐺 / 𝑅)))
7121, 66, 67divrec2d 12029 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7269, 70, 713eqtr2d 2775 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7372itgeq2dv 25753 . . . . . . 7 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
7464, 65, 733eqtr4rd 2780 . . . . . 6 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅))
7562, 74oveq12d 7431 . . . . 5 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7659, 60subcld 11602 . . . . . 6 (𝜑 → ((𝐴 · -𝐵) − (𝐶 · -𝐷)) ∈ ℂ)
7776, 23, 3, 46divsubdird 12064 . . . . 5 (𝜑 → ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7875, 77eqtr4d 2772 . . . 4 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅))
7978fveq2d 6890 . . 3 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)))
8076, 23subcld 11602 . . . 4 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℂ)
8180, 3, 46absdivd 15476 . . 3 (𝜑 → (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)))
824, 2, 45ltled 11391 . . . . 5 (𝜑 → 0 ≤ 𝑅)
832, 82absidd 15443 . . . 4 (𝜑 → (abs‘𝑅) = 𝑅)
8483oveq2d 7429 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8579, 81, 843eqtrd 2773 . 2 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8680abscld 15457 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8786, 2, 46redivcld 12077 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
8810, 14readdcld 11272 . . . . 5 (𝜑 → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8988, 24readdcld 11272 . . . 4 (𝜑 → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9089, 2, 46redivcld 12077 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
912, 45elrpd 13056 . . . 4 (𝜑𝑅 ∈ ℝ+)
9276abscld 15457 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ∈ ℝ)
9392, 24readdcld 11272 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9476, 23abs2dif2d 15479 . . . . 5 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
9559abscld 15457 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ∈ ℝ)
9660abscld 15457 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ∈ ℝ)
9795, 96readdcld 11272 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ∈ ℝ)
9859, 60abs2dif2d 15479 . . . . . . 7 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))))
999, 49absmuld 15475 . . . . . . . . 9 (𝜑 → (abs‘(𝐴 · -𝐵)) = ((abs‘𝐴) · (abs‘-𝐵)))
10049abscld 15457 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ∈ ℝ)
1011absnegd 15470 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐵) = (abs‘𝐵))
102 fourierdlem30.12 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐵) ≤ 1)
103101, 102eqbrtrd 5145 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ≤ 1)
104100, 5, 10, 32, 103lemul2ad 12190 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ ((abs‘𝐴) · 1))
10510recnd 11271 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℂ)
106105mulridd 11260 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
107104, 106breqtrd 5149 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ (abs‘𝐴))
10899, 107eqbrtrd 5145 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ≤ (abs‘𝐴))
10913, 55absmuld 15475 . . . . . . . . 9 (𝜑 → (abs‘(𝐶 · -𝐷)) = ((abs‘𝐶) · (abs‘-𝐷)))
11055abscld 15457 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ∈ ℝ)
11152absnegd 15470 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐷) = (abs‘𝐷))
112 fourierdlem30.14 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐷) ≤ 1)
113111, 112eqbrtrd 5145 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ≤ 1)
114110, 5, 14, 34, 113lemul2ad 12190 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ ((abs‘𝐶) · 1))
11514recnd 11271 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℂ)
116115mulridd 11260 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · 1) = (abs‘𝐶))
117114, 116breqtrd 5149 . . . . . . . . 9 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ (abs‘𝐶))
118109, 117eqbrtrd 5145 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ≤ (abs‘𝐶))
11995, 96, 10, 14, 108, 118le2addd 11864 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12092, 97, 88, 98, 119letrd 11400 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12192, 88, 24, 120leadd1dd 11859 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12286, 93, 89, 94, 121letrd 11400 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12386, 89, 91, 122lediv1dd 13117 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
12430ltp1d 12180 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
1254, 30, 31, 40, 124lelttrd 11401 . . . . . 6 (𝜑 → 0 < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
126125gt0ne0d 11809 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
12789, 31, 126redivcld 12077 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
12830, 40ge0p1rpd 13089 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
1298eqcomi 2743 . . . . . . . 8 (abs‘𝐴) = 𝑋
13012eqcomi 2743 . . . . . . . 8 (abs‘𝐶) = 𝑌
131129, 130oveq12i 7425 . . . . . . 7 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
13217eqcomi 2743 . . . . . . 7 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = 𝑍
133131, 132oveq12i 7425 . . . . . 6 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + 𝑍)
13439, 133breqtrrdi 5165 . . . . 5 (𝜑 → 0 ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
135128, 91, 89, 134, 43lediv2ad 13081 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
136133oveq1i 7423 . . . . 5 ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
137 oveq1 7420 . . . . . . . . 9 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
138137adantl 481 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13930recnd 11271 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℂ)
1405recnd 11271 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
141139, 140addcld 11262 . . . . . . . . . 10 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
142141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
143 oveq1 7420 . . . . . . . . . . . . . 14 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
14527rpcnd 13061 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
146145adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℂ)
14729adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ≠ 0)
148146, 147div0d 12024 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / 𝐸) = 0)
149144, 148eqtrd 2769 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = 0)
150149oveq1d 7428 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = (0 + 1))
151 0p1e1 12370 . . . . . . . . . . 11 (0 + 1) = 1
152150, 151eqtrdi 2785 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = 1)
153 ax-1ne0 11206 . . . . . . . . . . 11 1 ≠ 0
154153a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ≠ 0)
155152, 154eqnetrd 2998 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
156142, 155div0d 12024 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
157138, 156eqtrd 2769 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
15827rpgt0d 13062 . . . . . . . 8 (𝜑 → 0 < 𝐸)
159158adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < 𝐸)
160157, 159eqbrtrd 5145 . . . . . 6 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
16126adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
16227adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℝ+)
16339adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
164 neqne 2939 . . . . . . . . . . . 12 (¬ ((𝑋 + 𝑌) + 𝑍) = 0 → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
165164adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
166161, 163, 165ne0gt0d 11380 . . . . . . . . . 10 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < ((𝑋 + 𝑌) + 𝑍))
167161, 166elrpd 13056 . . . . . . . . 9 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ+)
168167, 162rpdivcld 13076 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ+)
169 1rp 13020 . . . . . . . . 9 1 ∈ ℝ+
170169a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ∈ ℝ+)
171168, 170rpaddcld 13074 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
172124adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
173161, 162, 171, 172ltdiv23d 13126 . . . . . 6 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
174160, 173pm2.61dan 812 . . . . 5 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
175136, 174eqbrtrid 5158 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
17690, 127, 28, 135, 175lelttrd 11401 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17787, 90, 28, 123, 176lelttrd 11401 . 2 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17885, 177eqbrtrd 5145 1 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5123  cmpt 5205  cfv 6541  (class class class)co 7413  cc 11135  cr 11136  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cle 11278  cmin 11474  -cneg 11475   / cdiv 11902  +crp 13016  abscabs 15255  𝐿1cibl 25588  citg 25589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cc 10457  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-disj 5091  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-ofr 7680  df-om 7870  df-1st 7996  df-2nd 7997  df-supp 8168  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-oadd 8492  df-omul 8493  df-er 8727  df-map 8850  df-pm 8851  df-ixp 8920  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fsupp 9384  df-fi 9433  df-sup 9464  df-inf 9465  df-oi 9532  df-dju 9923  df-card 9961  df-acn 9964  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ioo 13373  df-ioc 13374  df-ico 13375  df-icc 13376  df-fz 13530  df-fzo 13677  df-fl 13814  df-mod 13892  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-rlim 15507  df-sum 15705  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-mulr 17287  df-starv 17288  df-sca 17289  df-vsca 17290  df-ip 17291  df-tset 17292  df-ple 17293  df-ds 17295  df-unif 17296  df-hom 17297  df-cco 17298  df-rest 17438  df-topn 17439  df-0g 17457  df-gsum 17458  df-topgen 17459  df-pt 17460  df-prds 17463  df-xrs 17518  df-qtop 17523  df-imas 17524  df-xps 17526  df-mre 17600  df-mrc 17601  df-acs 17603  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-mulg 19055  df-cntz 19304  df-cmn 19768  df-psmet 21318  df-xmet 21319  df-met 21320  df-bl 21321  df-mopn 21322  df-cnfld 21327  df-top 22848  df-topon 22865  df-topsp 22887  df-bases 22900  df-cn 23181  df-cnp 23182  df-cmp 23341  df-tx 23516  df-hmeo 23709  df-xms 24275  df-ms 24276  df-tms 24277  df-cncf 24840  df-ovol 25435  df-vol 25436  df-mbf 25590  df-itg1 25591  df-itg2 25592  df-ibl 25593  df-itg 25594  df-0p 25641
This theorem is referenced by:  fourierdlem47  46125
  Copyright terms: Public domain W3C validator