Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem30 Structured version   Visualization version   GIF version

Theorem fourierdlem30 46138
Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem30.ibl (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierlemreimleblemlte22.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem30.g ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
fourierdlem30.a (𝜑𝐴 ∈ ℂ)
fourierdlem30.x 𝑋 = (abs‘𝐴)
fourierdlem30.c (𝜑𝐶 ∈ ℂ)
fourierdlem30.y 𝑌 = (abs‘𝐶)
fourierdlem30.z 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
fourierdlem30.e (𝜑𝐸 ∈ ℝ+)
fourierdlem30.r (𝜑𝑅 ∈ ℝ)
fourierdlem30.ler (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
fourierdlem30.b (𝜑𝐵 ∈ ℂ)
fourierdlem30.12 (𝜑 → (abs‘𝐵) ≤ 1)
fourierdlem30.d (𝜑𝐷 ∈ ℂ)
fourierdlem30.14 (𝜑 → (abs‘𝐷) ≤ 1)
Assertion
Ref Expression
fourierdlem30 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fourierdlem30
StepHypRef Expression
1 fourierdlem30.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2 fourierdlem30.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
32recnd 11162 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
4 0red 11137 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
5 1red 11135 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
6 0lt1 11661 . . . . . . . . . . . . . 14 0 < 1
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
8 fourierdlem30.x . . . . . . . . . . . . . . . . . . 19 𝑋 = (abs‘𝐴)
9 fourierdlem30.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℂ)
109abscld 15365 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrid 2832 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
12 fourierdlem30.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (abs‘𝐶)
13 fourierdlem30.c . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ℂ)
1413abscld 15365 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
1512, 14eqeltrid 2832 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
1611, 15readdcld 11163 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
17 fourierdlem30.z . . . . . . . . . . . . . . . . . 18 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
18 fourierlemreimleblemlte22.f . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
19 fourierdlem30.g . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
2019negcld 11481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → -𝐺 ∈ ℂ)
2118, 20mulcld 11154 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
22 fourierdlem30.ibl . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
2321, 22itgcl 25702 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
2423abscld 15365 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
2517, 24eqeltrid 2832 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
2616, 25readdcld 11163 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
27 fourierdlem30.e . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℝ+)
2827rpred 12956 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℝ)
2927rpne0d 12961 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ≠ 0)
3026, 28, 29redivcld 11971 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
3130, 5readdcld 11163 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
329absge0d 15373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐴))
3332, 8breqtrrdi 5137 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑋)
3413absge0d 15373 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐶))
3534, 12breqtrrdi 5137 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
3611, 15, 33, 35addge0d 11715 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3723absge0d 15373 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
3837, 17breqtrrdi 5137 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑍)
3916, 25, 36, 38addge0d 11715 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4026, 27, 39divge0d 12996 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
415, 30addge02d 11728 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸) ↔ 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
4240, 41mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
43 fourierdlem30.ler . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
445, 31, 2, 42, 43letrd 11292 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑅)
454, 5, 2, 7, 44ltletrd 11295 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑅)
4645gt0ne0d 11703 . . . . . . . . . . 11 (𝜑𝑅 ≠ 0)
471, 3, 46divnegd 11932 . . . . . . . . . 10 (𝜑 → -(𝐵 / 𝑅) = (-𝐵 / 𝑅))
4847oveq2d 7369 . . . . . . . . 9 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = (𝐴 · (-𝐵 / 𝑅)))
491negcld 11481 . . . . . . . . . 10 (𝜑 → -𝐵 ∈ ℂ)
509, 49, 3, 46divassd 11954 . . . . . . . . 9 (𝜑 → ((𝐴 · -𝐵) / 𝑅) = (𝐴 · (-𝐵 / 𝑅)))
5148, 50eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = ((𝐴 · -𝐵) / 𝑅))
52 fourierdlem30.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
5352, 3, 46divnegd 11932 . . . . . . . . . 10 (𝜑 → -(𝐷 / 𝑅) = (-𝐷 / 𝑅))
5453oveq2d 7369 . . . . . . . . 9 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = (𝐶 · (-𝐷 / 𝑅)))
5552negcld 11481 . . . . . . . . . 10 (𝜑 → -𝐷 ∈ ℂ)
5613, 55, 3, 46divassd 11954 . . . . . . . . 9 (𝜑 → ((𝐶 · -𝐷) / 𝑅) = (𝐶 · (-𝐷 / 𝑅)))
5754, 56eqtr4d 2767 . . . . . . . 8 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = ((𝐶 · -𝐷) / 𝑅))
5851, 57oveq12d 7371 . . . . . . 7 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
599, 49mulcld 11154 . . . . . . . 8 (𝜑 → (𝐴 · -𝐵) ∈ ℂ)
6013, 55mulcld 11154 . . . . . . . 8 (𝜑 → (𝐶 · -𝐷) ∈ ℂ)
6159, 60, 3, 46divsubdird 11958 . . . . . . 7 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
6258, 61eqtr4d 2767 . . . . . 6 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅))
633, 46reccld 11912 . . . . . . . 8 (𝜑 → (1 / 𝑅) ∈ ℂ)
6463, 21, 22itgmulc2 25752 . . . . . . 7 (𝜑 → ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥) = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
6523, 3, 46divrec2d 11923 . . . . . . 7 (𝜑 → (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅) = ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥))
663adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ∈ ℂ)
6746adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ≠ 0)
6819, 66, 67divnegd 11932 . . . . . . . . . 10 ((𝜑𝑥𝐼) → -(𝐺 / 𝑅) = (-𝐺 / 𝑅))
6968oveq2d 7369 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = (𝐹 · (-𝐺 / 𝑅)))
7018, 20, 66, 67divassd 11954 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = (𝐹 · (-𝐺 / 𝑅)))
7121, 66, 67divrec2d 11923 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7269, 70, 713eqtr2d 2770 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7372itgeq2dv 25700 . . . . . . 7 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
7464, 65, 733eqtr4rd 2775 . . . . . 6 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅))
7562, 74oveq12d 7371 . . . . 5 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7659, 60subcld 11494 . . . . . 6 (𝜑 → ((𝐴 · -𝐵) − (𝐶 · -𝐷)) ∈ ℂ)
7776, 23, 3, 46divsubdird 11958 . . . . 5 (𝜑 → ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7875, 77eqtr4d 2767 . . . 4 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅))
7978fveq2d 6830 . . 3 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)))
8076, 23subcld 11494 . . . 4 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℂ)
8180, 3, 46absdivd 15384 . . 3 (𝜑 → (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)))
824, 2, 45ltled 11283 . . . . 5 (𝜑 → 0 ≤ 𝑅)
832, 82absidd 15349 . . . 4 (𝜑 → (abs‘𝑅) = 𝑅)
8483oveq2d 7369 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8579, 81, 843eqtrd 2768 . 2 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8680abscld 15365 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8786, 2, 46redivcld 11971 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
8810, 14readdcld 11163 . . . . 5 (𝜑 → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8988, 24readdcld 11163 . . . 4 (𝜑 → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9089, 2, 46redivcld 11971 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
912, 45elrpd 12953 . . . 4 (𝜑𝑅 ∈ ℝ+)
9276abscld 15365 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ∈ ℝ)
9392, 24readdcld 11163 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9476, 23abs2dif2d 15387 . . . . 5 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
9559abscld 15365 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ∈ ℝ)
9660abscld 15365 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ∈ ℝ)
9795, 96readdcld 11163 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ∈ ℝ)
9859, 60abs2dif2d 15387 . . . . . . 7 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))))
999, 49absmuld 15383 . . . . . . . . 9 (𝜑 → (abs‘(𝐴 · -𝐵)) = ((abs‘𝐴) · (abs‘-𝐵)))
10049abscld 15365 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ∈ ℝ)
1011absnegd 15378 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐵) = (abs‘𝐵))
102 fourierdlem30.12 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐵) ≤ 1)
103101, 102eqbrtrd 5117 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ≤ 1)
104100, 5, 10, 32, 103lemul2ad 12084 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ ((abs‘𝐴) · 1))
10510recnd 11162 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℂ)
106105mulridd 11151 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
107104, 106breqtrd 5121 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ (abs‘𝐴))
10899, 107eqbrtrd 5117 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ≤ (abs‘𝐴))
10913, 55absmuld 15383 . . . . . . . . 9 (𝜑 → (abs‘(𝐶 · -𝐷)) = ((abs‘𝐶) · (abs‘-𝐷)))
11055abscld 15365 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ∈ ℝ)
11152absnegd 15378 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐷) = (abs‘𝐷))
112 fourierdlem30.14 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐷) ≤ 1)
113111, 112eqbrtrd 5117 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ≤ 1)
114110, 5, 14, 34, 113lemul2ad 12084 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ ((abs‘𝐶) · 1))
11514recnd 11162 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℂ)
116115mulridd 11151 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · 1) = (abs‘𝐶))
117114, 116breqtrd 5121 . . . . . . . . 9 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ (abs‘𝐶))
118109, 117eqbrtrd 5117 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ≤ (abs‘𝐶))
11995, 96, 10, 14, 108, 118le2addd 11758 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12092, 97, 88, 98, 119letrd 11292 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12192, 88, 24, 120leadd1dd 11753 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12286, 93, 89, 94, 121letrd 11292 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12386, 89, 91, 122lediv1dd 13014 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
12430ltp1d 12074 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
1254, 30, 31, 40, 124lelttrd 11293 . . . . . 6 (𝜑 → 0 < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
126125gt0ne0d 11703 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
12789, 31, 126redivcld 11971 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
12830, 40ge0p1rpd 12986 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
1298eqcomi 2738 . . . . . . . 8 (abs‘𝐴) = 𝑋
13012eqcomi 2738 . . . . . . . 8 (abs‘𝐶) = 𝑌
131129, 130oveq12i 7365 . . . . . . 7 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
13217eqcomi 2738 . . . . . . 7 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = 𝑍
133131, 132oveq12i 7365 . . . . . 6 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + 𝑍)
13439, 133breqtrrdi 5137 . . . . 5 (𝜑 → 0 ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
135128, 91, 89, 134, 43lediv2ad 12978 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
136133oveq1i 7363 . . . . 5 ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
137 oveq1 7360 . . . . . . . . 9 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
138137adantl 481 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13930recnd 11162 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℂ)
1405recnd 11162 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
141139, 140addcld 11153 . . . . . . . . . 10 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
142141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
143 oveq1 7360 . . . . . . . . . . . . . 14 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
14527rpcnd 12958 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
146145adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℂ)
14729adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ≠ 0)
148146, 147div0d 11918 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / 𝐸) = 0)
149144, 148eqtrd 2764 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = 0)
150149oveq1d 7368 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = (0 + 1))
151 0p1e1 12264 . . . . . . . . . . 11 (0 + 1) = 1
152150, 151eqtrdi 2780 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = 1)
153 ax-1ne0 11097 . . . . . . . . . . 11 1 ≠ 0
154153a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ≠ 0)
155152, 154eqnetrd 2992 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
156142, 155div0d 11918 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
157138, 156eqtrd 2764 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
15827rpgt0d 12959 . . . . . . . 8 (𝜑 → 0 < 𝐸)
159158adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < 𝐸)
160157, 159eqbrtrd 5117 . . . . . 6 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
16126adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
16227adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℝ+)
16339adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
164 neqne 2933 . . . . . . . . . . . 12 (¬ ((𝑋 + 𝑌) + 𝑍) = 0 → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
165164adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
166161, 163, 165ne0gt0d 11272 . . . . . . . . . 10 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < ((𝑋 + 𝑌) + 𝑍))
167161, 166elrpd 12953 . . . . . . . . 9 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ+)
168167, 162rpdivcld 12973 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ+)
169 1rp 12916 . . . . . . . . 9 1 ∈ ℝ+
170169a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ∈ ℝ+)
171168, 170rpaddcld 12971 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
172124adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
173161, 162, 171, 172ltdiv23d 13023 . . . . . 6 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
174160, 173pm2.61dan 812 . . . . 5 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
175136, 174eqbrtrid 5130 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
17690, 127, 28, 135, 175lelttrd 11293 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17787, 90, 28, 123, 176lelttrd 11293 . 2 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17885, 177eqbrtrd 5117 1 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11366  -cneg 11367   / cdiv 11796  +crp 12912  abscabs 15160  𝐿1cibl 25535  citg 25536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-4 12212  df-5 12213  df-6 12214  df-7 12215  df-8 12216  df-9 12217  df-n0 12404  df-z 12491  df-dec 12611  df-uz 12755  df-q 12869  df-rp 12913  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-mod 13793  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-struct 17077  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-mulr 17194  df-starv 17195  df-sca 17196  df-vsca 17197  df-ip 17198  df-tset 17199  df-ple 17200  df-ds 17202  df-unif 17203  df-hom 17204  df-cco 17205  df-rest 17345  df-topn 17346  df-0g 17364  df-gsum 17365  df-topgen 17366  df-pt 17367  df-prds 17370  df-xrs 17425  df-qtop 17430  df-imas 17431  df-xps 17433  df-mre 17507  df-mrc 17508  df-acs 17510  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-submnd 18677  df-mulg 18966  df-cntz 19215  df-cmn 19680  df-psmet 21272  df-xmet 21273  df-met 21274  df-bl 21275  df-mopn 21276  df-cnfld 21281  df-top 22798  df-topon 22815  df-topsp 22837  df-bases 22850  df-cn 23131  df-cnp 23132  df-cmp 23291  df-tx 23466  df-hmeo 23659  df-xms 24225  df-ms 24226  df-tms 24227  df-cncf 24788  df-ovol 25382  df-vol 25383  df-mbf 25537  df-itg1 25538  df-itg2 25539  df-ibl 25540  df-itg 25541  df-0p 25588
This theorem is referenced by:  fourierdlem47  46154
  Copyright terms: Public domain W3C validator