Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem30 Structured version   Visualization version   GIF version

Theorem fourierdlem30 46157
Description: Sum of three small pieces is less than ε. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem30.ibl (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
fourierlemreimleblemlte22.f ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
fourierdlem30.g ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
fourierdlem30.a (𝜑𝐴 ∈ ℂ)
fourierdlem30.x 𝑋 = (abs‘𝐴)
fourierdlem30.c (𝜑𝐶 ∈ ℂ)
fourierdlem30.y 𝑌 = (abs‘𝐶)
fourierdlem30.z 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
fourierdlem30.e (𝜑𝐸 ∈ ℝ+)
fourierdlem30.r (𝜑𝑅 ∈ ℝ)
fourierdlem30.ler (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
fourierdlem30.b (𝜑𝐵 ∈ ℂ)
fourierdlem30.12 (𝜑 → (abs‘𝐵) ≤ 1)
fourierdlem30.d (𝜑𝐷 ∈ ℂ)
fourierdlem30.14 (𝜑 → (abs‘𝐷) ≤ 1)
Assertion
Ref Expression
fourierdlem30 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Distinct variable groups:   𝑥,𝐼   𝑥,𝑅   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐸(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem fourierdlem30
StepHypRef Expression
1 fourierdlem30.b . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
2 fourierdlem30.r . . . . . . . . . . . 12 (𝜑𝑅 ∈ ℝ)
32recnd 11290 . . . . . . . . . . 11 (𝜑𝑅 ∈ ℂ)
4 0red 11265 . . . . . . . . . . . . 13 (𝜑 → 0 ∈ ℝ)
5 1red 11263 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℝ)
6 0lt1 11786 . . . . . . . . . . . . . 14 0 < 1
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → 0 < 1)
8 fourierdlem30.x . . . . . . . . . . . . . . . . . . 19 𝑋 = (abs‘𝐴)
9 fourierdlem30.a . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐴 ∈ ℂ)
109abscld 15476 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐴) ∈ ℝ)
118, 10eqeltrid 2844 . . . . . . . . . . . . . . . . . 18 (𝜑𝑋 ∈ ℝ)
12 fourierdlem30.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (abs‘𝐶)
13 fourierdlem30.c . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐶 ∈ ℂ)
1413abscld 15476 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (abs‘𝐶) ∈ ℝ)
1512, 14eqeltrid 2844 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌 ∈ ℝ)
1611, 15readdcld 11291 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑋 + 𝑌) ∈ ℝ)
17 fourierdlem30.z . . . . . . . . . . . . . . . . . 18 𝑍 = (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)
18 fourierlemreimleblemlte22.f . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → 𝐹 ∈ ℂ)
19 fourierdlem30.g . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥𝐼) → 𝐺 ∈ ℂ)
2019negcld 11608 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥𝐼) → -𝐺 ∈ ℂ)
2118, 20mulcld 11282 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐼) → (𝐹 · -𝐺) ∈ ℂ)
22 fourierdlem30.ibl . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑥𝐼 ↦ (𝐹 · -𝐺)) ∈ 𝐿1)
2321, 22itgcl 25820 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∫𝐼(𝐹 · -𝐺) d𝑥 ∈ ℂ)
2423abscld 15476 . . . . . . . . . . . . . . . . . 18 (𝜑 → (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℝ)
2517, 24eqeltrid 2844 . . . . . . . . . . . . . . . . 17 (𝜑𝑍 ∈ ℝ)
2616, 25readdcld 11291 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
27 fourierdlem30.e . . . . . . . . . . . . . . . . 17 (𝜑𝐸 ∈ ℝ+)
2827rpred 13078 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ∈ ℝ)
2927rpne0d 13083 . . . . . . . . . . . . . . . 16 (𝜑𝐸 ≠ 0)
3026, 28, 29redivcld 12096 . . . . . . . . . . . . . . 15 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ)
3130, 5readdcld 11291 . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ)
329absge0d 15484 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐴))
3332, 8breqtrrdi 5184 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑋)
3413absge0d 15484 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 ≤ (abs‘𝐶))
3534, 12breqtrrdi 5184 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ 𝑌)
3611, 15, 33, 35addge0d 11840 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ (𝑋 + 𝑌))
3723absge0d 15484 . . . . . . . . . . . . . . . . . 18 (𝜑 → 0 ≤ (abs‘∫𝐼(𝐹 · -𝐺) d𝑥))
3837, 17breqtrrdi 5184 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑍)
3916, 25, 36, 38addge0d 11840 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
4026, 27, 39divge0d 13118 . . . . . . . . . . . . . . 15 (𝜑 → 0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸))
415, 30addge02d 11853 . . . . . . . . . . . . . . 15 (𝜑 → (0 ≤ (((𝑋 + 𝑌) + 𝑍) / 𝐸) ↔ 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
4240, 41mpbid 232 . . . . . . . . . . . . . 14 (𝜑 → 1 ≤ ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
43 fourierdlem30.ler . . . . . . . . . . . . . 14 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≤ 𝑅)
445, 31, 2, 42, 43letrd 11419 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑅)
454, 5, 2, 7, 44ltletrd 11422 . . . . . . . . . . . 12 (𝜑 → 0 < 𝑅)
4645gt0ne0d 11828 . . . . . . . . . . 11 (𝜑𝑅 ≠ 0)
471, 3, 46divnegd 12057 . . . . . . . . . 10 (𝜑 → -(𝐵 / 𝑅) = (-𝐵 / 𝑅))
4847oveq2d 7448 . . . . . . . . 9 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = (𝐴 · (-𝐵 / 𝑅)))
491negcld 11608 . . . . . . . . . 10 (𝜑 → -𝐵 ∈ ℂ)
509, 49, 3, 46divassd 12079 . . . . . . . . 9 (𝜑 → ((𝐴 · -𝐵) / 𝑅) = (𝐴 · (-𝐵 / 𝑅)))
5148, 50eqtr4d 2779 . . . . . . . 8 (𝜑 → (𝐴 · -(𝐵 / 𝑅)) = ((𝐴 · -𝐵) / 𝑅))
52 fourierdlem30.d . . . . . . . . . . 11 (𝜑𝐷 ∈ ℂ)
5352, 3, 46divnegd 12057 . . . . . . . . . 10 (𝜑 → -(𝐷 / 𝑅) = (-𝐷 / 𝑅))
5453oveq2d 7448 . . . . . . . . 9 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = (𝐶 · (-𝐷 / 𝑅)))
5552negcld 11608 . . . . . . . . . 10 (𝜑 → -𝐷 ∈ ℂ)
5613, 55, 3, 46divassd 12079 . . . . . . . . 9 (𝜑 → ((𝐶 · -𝐷) / 𝑅) = (𝐶 · (-𝐷 / 𝑅)))
5754, 56eqtr4d 2779 . . . . . . . 8 (𝜑 → (𝐶 · -(𝐷 / 𝑅)) = ((𝐶 · -𝐷) / 𝑅))
5851, 57oveq12d 7450 . . . . . . 7 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
599, 49mulcld 11282 . . . . . . . 8 (𝜑 → (𝐴 · -𝐵) ∈ ℂ)
6013, 55mulcld 11282 . . . . . . . 8 (𝜑 → (𝐶 · -𝐷) ∈ ℂ)
6159, 60, 3, 46divsubdird 12083 . . . . . . 7 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) = (((𝐴 · -𝐵) / 𝑅) − ((𝐶 · -𝐷) / 𝑅)))
6258, 61eqtr4d 2779 . . . . . 6 (𝜑 → ((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) = (((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅))
633, 46reccld 12037 . . . . . . . 8 (𝜑 → (1 / 𝑅) ∈ ℂ)
6463, 21, 22itgmulc2 25870 . . . . . . 7 (𝜑 → ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥) = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
6523, 3, 46divrec2d 12048 . . . . . . 7 (𝜑 → (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅) = ((1 / 𝑅) · ∫𝐼(𝐹 · -𝐺) d𝑥))
663adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ∈ ℂ)
6746adantr 480 . . . . . . . . . . 11 ((𝜑𝑥𝐼) → 𝑅 ≠ 0)
6819, 66, 67divnegd 12057 . . . . . . . . . 10 ((𝜑𝑥𝐼) → -(𝐺 / 𝑅) = (-𝐺 / 𝑅))
6968oveq2d 7448 . . . . . . . . 9 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = (𝐹 · (-𝐺 / 𝑅)))
7018, 20, 66, 67divassd 12079 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = (𝐹 · (-𝐺 / 𝑅)))
7121, 66, 67divrec2d 12048 . . . . . . . . 9 ((𝜑𝑥𝐼) → ((𝐹 · -𝐺) / 𝑅) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7269, 70, 713eqtr2d 2782 . . . . . . . 8 ((𝜑𝑥𝐼) → (𝐹 · -(𝐺 / 𝑅)) = ((1 / 𝑅) · (𝐹 · -𝐺)))
7372itgeq2dv 25818 . . . . . . 7 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = ∫𝐼((1 / 𝑅) · (𝐹 · -𝐺)) d𝑥)
7464, 65, 733eqtr4rd 2787 . . . . . 6 (𝜑 → ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥 = (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅))
7562, 74oveq12d 7450 . . . . 5 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7659, 60subcld 11621 . . . . . 6 (𝜑 → ((𝐴 · -𝐵) − (𝐶 · -𝐷)) ∈ ℂ)
7776, 23, 3, 46divsubdird 12083 . . . . 5 (𝜑 → ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) / 𝑅) − (∫𝐼(𝐹 · -𝐺) d𝑥 / 𝑅)))
7875, 77eqtr4d 2779 . . . 4 (𝜑 → (((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥) = ((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅))
7978fveq2d 6909 . . 3 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)))
8076, 23subcld 11621 . . . 4 (𝜑 → (((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) ∈ ℂ)
8180, 3, 46absdivd 15495 . . 3 (𝜑 → (abs‘((((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥) / 𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)))
824, 2, 45ltled 11410 . . . . 5 (𝜑 → 0 ≤ 𝑅)
832, 82absidd 15462 . . . 4 (𝜑 → (abs‘𝑅) = 𝑅)
8483oveq2d 7448 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / (abs‘𝑅)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8579, 81, 843eqtrd 2780 . 2 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) = ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
8680abscld 15476 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
8786, 2, 46redivcld 12096 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
8810, 14readdcld 11291 . . . . 5 (𝜑 → ((abs‘𝐴) + (abs‘𝐶)) ∈ ℝ)
8988, 24readdcld 11291 . . . 4 (𝜑 → (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9089, 2, 46redivcld 12096 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ∈ ℝ)
912, 45elrpd 13075 . . . 4 (𝜑𝑅 ∈ ℝ+)
9276abscld 15476 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ∈ ℝ)
9392, 24readdcld 11291 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ∈ ℝ)
9476, 23abs2dif2d 15498 . . . . 5 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
9559abscld 15476 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ∈ ℝ)
9660abscld 15476 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ∈ ℝ)
9795, 96readdcld 11291 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ∈ ℝ)
9859, 60abs2dif2d 15498 . . . . . . 7 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))))
999, 49absmuld 15494 . . . . . . . . 9 (𝜑 → (abs‘(𝐴 · -𝐵)) = ((abs‘𝐴) · (abs‘-𝐵)))
10049abscld 15476 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ∈ ℝ)
1011absnegd 15489 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐵) = (abs‘𝐵))
102 fourierdlem30.12 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐵) ≤ 1)
103101, 102eqbrtrd 5164 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐵) ≤ 1)
104100, 5, 10, 32, 103lemul2ad 12209 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ ((abs‘𝐴) · 1))
10510recnd 11290 . . . . . . . . . . 11 (𝜑 → (abs‘𝐴) ∈ ℂ)
106105mulridd 11279 . . . . . . . . . 10 (𝜑 → ((abs‘𝐴) · 1) = (abs‘𝐴))
107104, 106breqtrd 5168 . . . . . . . . 9 (𝜑 → ((abs‘𝐴) · (abs‘-𝐵)) ≤ (abs‘𝐴))
10899, 107eqbrtrd 5164 . . . . . . . 8 (𝜑 → (abs‘(𝐴 · -𝐵)) ≤ (abs‘𝐴))
10913, 55absmuld 15494 . . . . . . . . 9 (𝜑 → (abs‘(𝐶 · -𝐷)) = ((abs‘𝐶) · (abs‘-𝐷)))
11055abscld 15476 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ∈ ℝ)
11152absnegd 15489 . . . . . . . . . . . 12 (𝜑 → (abs‘-𝐷) = (abs‘𝐷))
112 fourierdlem30.14 . . . . . . . . . . . 12 (𝜑 → (abs‘𝐷) ≤ 1)
113111, 112eqbrtrd 5164 . . . . . . . . . . 11 (𝜑 → (abs‘-𝐷) ≤ 1)
114110, 5, 14, 34, 113lemul2ad 12209 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ ((abs‘𝐶) · 1))
11514recnd 11290 . . . . . . . . . . 11 (𝜑 → (abs‘𝐶) ∈ ℂ)
116115mulridd 11279 . . . . . . . . . 10 (𝜑 → ((abs‘𝐶) · 1) = (abs‘𝐶))
117114, 116breqtrd 5168 . . . . . . . . 9 (𝜑 → ((abs‘𝐶) · (abs‘-𝐷)) ≤ (abs‘𝐶))
118109, 117eqbrtrd 5164 . . . . . . . 8 (𝜑 → (abs‘(𝐶 · -𝐷)) ≤ (abs‘𝐶))
11995, 96, 10, 14, 108, 118le2addd 11883 . . . . . . 7 (𝜑 → ((abs‘(𝐴 · -𝐵)) + (abs‘(𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12092, 97, 88, 98, 119letrd 11419 . . . . . 6 (𝜑 → (abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) ≤ ((abs‘𝐴) + (abs‘𝐶)))
12192, 88, 24, 120leadd1dd 11878 . . . . 5 (𝜑 → ((abs‘((𝐴 · -𝐵) − (𝐶 · -𝐷))) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12286, 93, 89, 94, 121letrd 11419 . . . 4 (𝜑 → (abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
12386, 89, 91, 122lediv1dd 13136 . . 3 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅))
12430ltp1d 12199 . . . . . . 7 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
1254, 30, 31, 40, 124lelttrd 11420 . . . . . 6 (𝜑 → 0 < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
126125gt0ne0d 11828 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
12789, 31, 126redivcld 12096 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) ∈ ℝ)
12830, 40ge0p1rpd 13108 . . . . 5 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
1298eqcomi 2745 . . . . . . . 8 (abs‘𝐴) = 𝑋
13012eqcomi 2745 . . . . . . . 8 (abs‘𝐶) = 𝑌
131129, 130oveq12i 7444 . . . . . . 7 ((abs‘𝐴) + (abs‘𝐶)) = (𝑋 + 𝑌)
13217eqcomi 2745 . . . . . . 7 (abs‘∫𝐼(𝐹 · -𝐺) d𝑥) = 𝑍
133131, 132oveq12i 7444 . . . . . 6 (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) = ((𝑋 + 𝑌) + 𝑍)
13439, 133breqtrrdi 5184 . . . . 5 (𝜑 → 0 ≤ (((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)))
135128, 91, 89, 134, 43lediv2ad 13100 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) ≤ ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
136133oveq1i 7442 . . . . 5 ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
137 oveq1 7439 . . . . . . . . 9 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
138137adantl 481 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)))
13930recnd 11290 . . . . . . . . . . 11 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℂ)
1405recnd 11290 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℂ)
141139, 140addcld 11281 . . . . . . . . . 10 (𝜑 → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
142141adantr 480 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℂ)
143 oveq1 7439 . . . . . . . . . . . . . 14 (((𝑋 + 𝑌) + 𝑍) = 0 → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
144143adantl 481 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = (0 / 𝐸))
14527rpcnd 13080 . . . . . . . . . . . . . . 15 (𝜑𝐸 ∈ ℂ)
146145adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℂ)
14729adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ≠ 0)
148146, 147div0d 12043 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / 𝐸) = 0)
149144, 148eqtrd 2776 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) = 0)
150149oveq1d 7447 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = (0 + 1))
151 0p1e1 12389 . . . . . . . . . . 11 (0 + 1) = 1
152150, 151eqtrdi 2792 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) = 1)
153 ax-1ne0 11225 . . . . . . . . . . 11 1 ≠ 0
154153a1i 11 . . . . . . . . . 10 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ≠ 0)
155152, 154eqnetrd 3007 . . . . . . . . 9 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ≠ 0)
156142, 155div0d 12043 . . . . . . . 8 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (0 / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
157138, 156eqtrd 2776 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) = 0)
15827rpgt0d 13081 . . . . . . . 8 (𝜑 → 0 < 𝐸)
159158adantr 480 . . . . . . 7 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < 𝐸)
160157, 159eqbrtrd 5164 . . . . . 6 ((𝜑 ∧ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
16126adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ)
16227adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 𝐸 ∈ ℝ+)
16339adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 ≤ ((𝑋 + 𝑌) + 𝑍))
164 neqne 2947 . . . . . . . . . . . 12 (¬ ((𝑋 + 𝑌) + 𝑍) = 0 → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
165164adantl 481 . . . . . . . . . . 11 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ≠ 0)
166161, 163, 165ne0gt0d 11399 . . . . . . . . . 10 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 0 < ((𝑋 + 𝑌) + 𝑍))
167161, 166elrpd 13075 . . . . . . . . 9 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((𝑋 + 𝑌) + 𝑍) ∈ ℝ+)
168167, 162rpdivcld 13095 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) ∈ ℝ+)
169 1rp 13039 . . . . . . . . 9 1 ∈ ℝ+
170169a1i 11 . . . . . . . 8 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → 1 ∈ ℝ+)
171168, 170rpaddcld 13093 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1) ∈ ℝ+)
172124adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / 𝐸) < ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1))
173161, 162, 171, 172ltdiv23d 13145 . . . . . 6 ((𝜑 ∧ ¬ ((𝑋 + 𝑌) + 𝑍) = 0) → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
174160, 173pm2.61dan 812 . . . . 5 (𝜑 → (((𝑋 + 𝑌) + 𝑍) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
175136, 174eqbrtrid 5177 . . . 4 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / ((((𝑋 + 𝑌) + 𝑍) / 𝐸) + 1)) < 𝐸)
17690, 127, 28, 135, 175lelttrd 11420 . . 3 (𝜑 → ((((abs‘𝐴) + (abs‘𝐶)) + (abs‘∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17787, 90, 28, 123, 176lelttrd 11420 . 2 (𝜑 → ((abs‘(((𝐴 · -𝐵) − (𝐶 · -𝐷)) − ∫𝐼(𝐹 · -𝐺) d𝑥)) / 𝑅) < 𝐸)
17885, 177eqbrtrd 5164 1 (𝜑 → (abs‘(((𝐴 · -(𝐵 / 𝑅)) − (𝐶 · -(𝐷 / 𝑅))) − ∫𝐼(𝐹 · -(𝐺 / 𝑅)) d𝑥)) < 𝐸)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cmpt 5224  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  cmin 11493  -cneg 11494   / cdiv 11921  +crp 13035  abscabs 15274  𝐿1cibl 25653  citg 25654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cc 10476  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-disj 5110  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-ofr 7699  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-omul 8512  df-er 8746  df-map 8869  df-pm 8870  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-fi 9452  df-sup 9483  df-inf 9484  df-oi 9551  df-dju 9942  df-card 9980  df-acn 9983  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ioo 13392  df-ioc 13393  df-ico 13394  df-icc 13395  df-fz 13549  df-fzo 13696  df-fl 13833  df-mod 13911  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-mulg 19087  df-cntz 19336  df-cmn 19801  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-cnfld 21366  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cn 23236  df-cnp 23237  df-cmp 23396  df-tx 23571  df-hmeo 23764  df-xms 24331  df-ms 24332  df-tms 24333  df-cncf 24905  df-ovol 25500  df-vol 25501  df-mbf 25655  df-itg1 25656  df-itg2 25657  df-ibl 25658  df-itg 25659  df-0p 25706
This theorem is referenced by:  fourierdlem47  46173
  Copyright terms: Public domain W3C validator