Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem28 Structured version   Visualization version   GIF version

Theorem fourierdlem28 46150
Description: Derivative of (𝐹‘(𝑋 + 𝑠)). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem28.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem28.x (𝜑𝑋 ∈ ℝ)
fourierdlem28.a (𝜑𝐴 ∈ ℝ)
fourierdlem28.3b (𝜑𝐵 ∈ ℝ)
fourierdlem28.d 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
fourierdlem28.df (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
Assertion
Ref Expression
fourierdlem28 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem fourierdlem28
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11247 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 fourierdlem28.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 fourierdlem28.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 11290 . . . . . 6 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 11311 . . . . 5 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 480 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem28.3b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 11290 . . . . . 6 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 11311 . . . . 5 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 480 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 13417 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 481 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 11290 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 11311 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 11311 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1918adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 45508 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1373 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 11420 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 45523 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1373 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 11420 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 45511 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
29 1red 11262 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
30 fourierdlem28.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
3130adantr 480 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ)
32 elioore 13417 . . . . . 6 (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ)
3332adantl 481 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ)
3431, 33ffvelcdmd 7105 . . . 4 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℝ)
3534recnd 11289 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℂ)
36 fourierdlem28.df . . . 4 (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3736ffvelcdmda 7104 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷𝑦) ∈ ℝ)
3812recnd 11289 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
39 0red 11264 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
40 iooretop 24786 . . . . . . . 8 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 tgioo4 24826 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4240, 41eleqtri 2839 . . . . . . 7 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4342a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
443recnd 11289 . . . . . 6 (𝜑𝑋 ∈ ℂ)
452, 43, 44dvmptconst 45930 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
4614recnd 11289 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
472, 43dvmptidg 45932 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
482, 38, 39, 45, 46, 29, 47dvmptadd 25998 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)))
49 0p1e1 12388 . . . . . 6 (0 + 1) = 1
5049a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1)
5150mpteq2dva 5242 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5248, 51eqtrd 2777 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5330feqmptd 6977 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
5453reseq1d 5996 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
55 ioossre 13448 . . . . . . . 8 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
5655a1i 11 . . . . . . 7 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
5756resmptd 6058 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)))
5854, 57eqtr2d 2778 . . . . 5 (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
5958oveq2d 7447 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
60 fourierdlem28.d . . . . . 6 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
6160eqcomi 2746 . . . . 5 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷
6261a1i 11 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷)
6336feqmptd 6977 . . . 4 (𝜑𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
6459, 62, 633eqtrd 2781 . . 3 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
65 fveq2 6906 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐹𝑦) = (𝐹‘(𝑋 + 𝑠)))
66 fveq2 6906 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐷𝑦) = (𝐷‘(𝑋 + 𝑠)))
672, 2, 28, 29, 35, 37, 52, 64, 65, 66dvmptco 26010 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)))
6836adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6968, 28ffvelcdmd 7105 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ)
7069recnd 11289 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ)
7170mulridd 11278 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠)))
7271mpteq2dva 5242 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
7367, 72eqtrd 2777 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225  ran crn 5686  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  (,)cioo 13387  t crest 17465  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem57  46178  fourierdlem59  46180  fourierdlem68  46189
  Copyright terms: Public domain W3C validator