Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem28 Structured version   Visualization version   GIF version

Theorem fourierdlem28 46116
Description: Derivative of (𝐹‘(𝑋 + 𝑠)). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem28.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem28.x (𝜑𝑋 ∈ ℝ)
fourierdlem28.a (𝜑𝐴 ∈ ℝ)
fourierdlem28.3b (𝜑𝐵 ∈ ℝ)
fourierdlem28.d 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
fourierdlem28.df (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
Assertion
Ref Expression
fourierdlem28 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem fourierdlem28
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 11101 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 fourierdlem28.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 fourierdlem28.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 11144 . . . . . 6 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 11165 . . . . 5 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 480 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem28.3b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 11144 . . . . . 6 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 11165 . . . . 5 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 480 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 13278 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 481 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 11144 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 11165 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 11165 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1918adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 484 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 45476 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1373 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 11275 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 480 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 45491 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1373 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 11275 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 45479 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
29 1red 11116 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
30 fourierdlem28.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
3130adantr 480 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ)
32 elioore 13278 . . . . . 6 (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ)
3332adantl 481 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ)
3431, 33ffvelcdmd 7019 . . . 4 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℝ)
3534recnd 11143 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℂ)
36 fourierdlem28.df . . . 4 (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3736ffvelcdmda 7018 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷𝑦) ∈ ℝ)
3812recnd 11143 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
39 0red 11118 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
40 iooretop 24651 . . . . . . . 8 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 tgioo4 24691 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4240, 41eleqtri 2826 . . . . . . 7 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4342a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
443recnd 11143 . . . . . 6 (𝜑𝑋 ∈ ℂ)
452, 43, 44dvmptconst 45896 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
4614recnd 11143 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
472, 43dvmptidg 45898 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
482, 38, 39, 45, 46, 29, 47dvmptadd 25862 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)))
49 0p1e1 12245 . . . . . 6 (0 + 1) = 1
5049a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1)
5150mpteq2dva 5185 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5248, 51eqtrd 2764 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5330feqmptd 6891 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
5453reseq1d 5929 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
55 ioossre 13310 . . . . . . . 8 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
5655a1i 11 . . . . . . 7 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
5756resmptd 5991 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)))
5854, 57eqtr2d 2765 . . . . 5 (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
5958oveq2d 7365 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
60 fourierdlem28.d . . . . . 6 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
6160eqcomi 2738 . . . . 5 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷
6261a1i 11 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷)
6336feqmptd 6891 . . . 4 (𝜑𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
6459, 62, 633eqtrd 2768 . . 3 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
65 fveq2 6822 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐹𝑦) = (𝐹‘(𝑋 + 𝑠)))
66 fveq2 6822 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐷𝑦) = (𝐷‘(𝑋 + 𝑠)))
672, 2, 28, 29, 35, 37, 52, 64, 65, 66dvmptco 25874 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)))
6836adantr 480 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
6968, 28ffvelcdmd 7019 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ)
7069recnd 11143 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ)
7170mulridd 11132 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠)))
7271mpteq2dva 5185 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
7367, 72eqtrd 2764 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  {cpr 4579   class class class wbr 5092  cmpt 5173  ran crn 5620  cres 5621  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  (,)cioo 13248  t crest 17324  TopOpenctopn 17325  topGenctg 17341  fldccnfld 21261   D cdv 25762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-icc 13255  df-fz 13411  df-fzo 13558  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  fourierdlem57  46144  fourierdlem59  46146  fourierdlem68  46155
  Copyright terms: Public domain W3C validator