| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | reelprrecn 11247 | . . . 4
⊢ ℝ
∈ {ℝ, ℂ} | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) | 
| 3 |  | fourierdlem28.x | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) | 
| 4 |  | fourierdlem28.a | . . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 | 3, 4 | readdcld 11290 | . . . . . 6
⊢ (𝜑 → (𝑋 + 𝐴) ∈ ℝ) | 
| 6 | 5 | rexrd 11311 | . . . . 5
⊢ (𝜑 → (𝑋 + 𝐴) ∈
ℝ*) | 
| 7 | 6 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈
ℝ*) | 
| 8 |  | fourierdlem28.3b | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 9 | 3, 8 | readdcld 11290 | . . . . . 6
⊢ (𝜑 → (𝑋 + 𝐵) ∈ ℝ) | 
| 10 | 9 | rexrd 11311 | . . . . 5
⊢ (𝜑 → (𝑋 + 𝐵) ∈
ℝ*) | 
| 11 | 10 | adantr 480 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈
ℝ*) | 
| 12 | 3 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) | 
| 13 |  | elioore 13417 | . . . . . 6
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) | 
| 14 | 13 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) | 
| 15 | 12, 14 | readdcld 11290 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) | 
| 16 | 4 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) | 
| 17 | 16 | rexrd 11311 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) | 
| 18 | 8 | rexrd 11311 | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 19 | 18 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) | 
| 20 |  | simpr 484 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵)) | 
| 21 |  | ioogtlb 45508 | . . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) | 
| 22 | 17, 19, 20, 21 | syl3anc 1373 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) | 
| 23 | 16, 14, 12, 22 | ltadd2dd 11420 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠)) | 
| 24 | 8 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) | 
| 25 |  | iooltub 45523 | . . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) | 
| 26 | 17, 19, 20, 25 | syl3anc 1373 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) | 
| 27 | 14, 24, 12, 26 | ltadd2dd 11420 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵)) | 
| 28 | 7, 11, 15, 23, 27 | eliood 45511 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) | 
| 29 |  | 1red 11262 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) | 
| 30 |  | fourierdlem28.1 | . . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) | 
| 31 | 30 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ) | 
| 32 |  | elioore 13417 | . . . . . 6
⊢ (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ) | 
| 33 | 32 | adantl 481 | . . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ) | 
| 34 | 31, 33 | ffvelcdmd 7105 | . . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℝ) | 
| 35 | 34 | recnd 11289 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℂ) | 
| 36 |  | fourierdlem28.df | . . . 4
⊢ (𝜑 → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) | 
| 37 | 36 | ffvelcdmda 7104 | . . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷‘𝑦) ∈ ℝ) | 
| 38 | 12 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) | 
| 39 |  | 0red 11264 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) | 
| 40 |  | iooretop 24786 | . . . . . . . 8
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) | 
| 41 |  | tgioo4 24826 | . . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) | 
| 42 | 40, 41 | eleqtri 2839 | . . . . . . 7
⊢ (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ) | 
| 43 | 42 | a1i 11 | . . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ)) | 
| 44 | 3 | recnd 11289 | . . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) | 
| 45 | 2, 43, 44 | dvmptconst 45930 | . . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0)) | 
| 46 | 14 | recnd 11289 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) | 
| 47 | 2, 43 | dvmptidg 45932 | . . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 48 | 2, 38, 39, 45, 46, 29, 47 | dvmptadd 25998 | . . . 4
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1))) | 
| 49 |  | 0p1e1 12388 | . . . . . 6
⊢ (0 + 1) =
1 | 
| 50 | 49 | a1i 11 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1) | 
| 51 | 50 | mpteq2dva 5242 | . . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 52 | 48, 51 | eqtrd 2777 | . . 3
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) | 
| 53 | 30 | feqmptd 6977 | . . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) | 
| 54 | 53 | reseq1d 5996 | . . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) | 
| 55 |  | ioossre 13448 | . . . . . . . 8
⊢ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ | 
| 56 | 55 | a1i 11 | . . . . . . 7
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ) | 
| 57 | 56 | resmptd 6058 | . . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) | 
| 58 | 54, 57 | eqtr2d 2778 | . . . . 5
⊢ (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) | 
| 59 | 58 | oveq2d 7447 | . . . 4
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) | 
| 60 |  | fourierdlem28.d | . . . . . 6
⊢ 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) | 
| 61 | 60 | eqcomi 2746 | . . . . 5
⊢ (ℝ
D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷 | 
| 62 | 61 | a1i 11 | . . . 4
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷) | 
| 63 | 36 | feqmptd 6977 | . . . 4
⊢ (𝜑 → 𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) | 
| 64 | 59, 62, 63 | 3eqtrd 2781 | . . 3
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) | 
| 65 |  | fveq2 6906 | . . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐹‘𝑦) = (𝐹‘(𝑋 + 𝑠))) | 
| 66 |  | fveq2 6906 | . . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐷‘𝑦) = (𝐷‘(𝑋 + 𝑠))) | 
| 67 | 2, 2, 28, 29, 35, 37, 52, 64, 65, 66 | dvmptco 26010 | . 2
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1))) | 
| 68 | 36 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) | 
| 69 | 68, 28 | ffvelcdmd 7105 | . . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ) | 
| 70 | 69 | recnd 11289 | . . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ) | 
| 71 | 70 | mulridd 11278 | . . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠))) | 
| 72 | 71 | mpteq2dva 5242 | . 2
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) | 
| 73 | 67, 72 | eqtrd 2777 | 1
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) |