Step | Hyp | Ref
| Expression |
1 | | reelprrecn 11009 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → ℝ ∈ {ℝ,
ℂ}) |
3 | | fourierdlem28.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ ℝ) |
4 | | fourierdlem28.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | 3, 4 | readdcld 11050 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 𝐴) ∈ ℝ) |
6 | 5 | rexrd 11071 |
. . . . 5
⊢ (𝜑 → (𝑋 + 𝐴) ∈
ℝ*) |
7 | 6 | adantr 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈
ℝ*) |
8 | | fourierdlem28.3b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ ℝ) |
9 | 3, 8 | readdcld 11050 |
. . . . . 6
⊢ (𝜑 → (𝑋 + 𝐵) ∈ ℝ) |
10 | 9 | rexrd 11071 |
. . . . 5
⊢ (𝜑 → (𝑋 + 𝐵) ∈
ℝ*) |
11 | 10 | adantr 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈
ℝ*) |
12 | 3 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ) |
13 | | elioore 13155 |
. . . . . 6
⊢ (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ) |
14 | 13 | adantl 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ) |
15 | 12, 14 | readdcld 11050 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
16 | 4 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ) |
17 | 16 | rexrd 11071 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈
ℝ*) |
18 | 8 | rexrd 11071 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
19 | 18 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈
ℝ*) |
20 | | simpr 486 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵)) |
21 | | ioogtlb 43082 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
22 | 17, 19, 20, 21 | syl3anc 1371 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠) |
23 | 16, 14, 12, 22 | ltadd2dd 11180 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠)) |
24 | 8 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ) |
25 | | iooltub 43097 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑠
∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
26 | 17, 19, 20, 25 | syl3anc 1371 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵) |
27 | 14, 24, 12, 26 | ltadd2dd 11180 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵)) |
28 | 7, 11, 15, 23, 27 | eliood 43085 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) |
29 | | 1red 11022 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ) |
30 | | fourierdlem28.1 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
31 | 30 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ) |
32 | | elioore 13155 |
. . . . . 6
⊢ (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ) |
33 | 32 | adantl 483 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ) |
34 | 31, 33 | ffvelcdmd 6994 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℝ) |
35 | 34 | recnd 11049 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹‘𝑦) ∈ ℂ) |
36 | | fourierdlem28.df |
. . . 4
⊢ (𝜑 → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
37 | 36 | ffvelcdmda 6993 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷‘𝑦) ∈ ℝ) |
38 | 12 | recnd 11049 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ) |
39 | | 0red 11024 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ) |
40 | | iooretop 23974 |
. . . . . . . 8
⊢ (𝐴(,)𝐵) ∈ (topGen‘ran
(,)) |
41 | | eqid 2736 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
42 | 41 | tgioo2 24011 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
43 | 40, 42 | eleqtri 2835 |
. . . . . . 7
⊢ (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ) |
44 | 43 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (𝐴(,)𝐵) ∈
((TopOpen‘ℂfld) ↾t
ℝ)) |
45 | 3 | recnd 11049 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ ℂ) |
46 | 2, 44, 45 | dvmptconst 43505 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0)) |
47 | 14 | recnd 11049 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ) |
48 | 2, 44 | dvmptidg 43507 |
. . . . 5
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
49 | 2, 38, 39, 46, 47, 29, 48 | dvmptadd 25169 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1))) |
50 | | 0p1e1 12141 |
. . . . . 6
⊢ (0 + 1) =
1 |
51 | 50 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1) |
52 | 51 | mpteq2dva 5181 |
. . . 4
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
53 | 49, 52 | eqtrd 2776 |
. . 3
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1)) |
54 | 30 | feqmptd 6869 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = (𝑦 ∈ ℝ ↦ (𝐹‘𝑦))) |
55 | 54 | reseq1d 5902 |
. . . . . 6
⊢ (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
56 | | ioossre 13186 |
. . . . . . . 8
⊢ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ |
57 | 56 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ) |
58 | 57 | resmptd 5960 |
. . . . . 6
⊢ (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹‘𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) |
59 | 55, 58 | eqtr2d 2777 |
. . . . 5
⊢ (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
60 | 59 | oveq2d 7323 |
. . . 4
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))) |
61 | | fourierdlem28.d |
. . . . . 6
⊢ 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) |
62 | 61 | eqcomi 2745 |
. . . . 5
⊢ (ℝ
D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷 |
63 | 62 | a1i 11 |
. . . 4
⊢ (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷) |
64 | 36 | feqmptd 6869 |
. . . 4
⊢ (𝜑 → 𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) |
65 | 60, 63, 64 | 3eqtrd 2780 |
. . 3
⊢ (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹‘𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷‘𝑦))) |
66 | | fveq2 6804 |
. . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐹‘𝑦) = (𝐹‘(𝑋 + 𝑠))) |
67 | | fveq2 6804 |
. . 3
⊢ (𝑦 = (𝑋 + 𝑠) → (𝐷‘𝑦) = (𝐷‘(𝑋 + 𝑠))) |
68 | 2, 2, 28, 29, 35, 37, 53, 65, 66, 67 | dvmptco 25181 |
. 2
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1))) |
69 | 36 | adantr 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ) |
70 | 69, 28 | ffvelcdmd 6994 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ) |
71 | 70 | recnd 11049 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ) |
72 | 71 | mulid1d 11038 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠))) |
73 | 72 | mpteq2dva 5181 |
. 2
⊢ (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) |
74 | 68, 73 | eqtrd 2776 |
1
⊢ (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠)))) |