Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem28 Structured version   Visualization version   GIF version

Theorem fourierdlem28 41272
Description: Derivative of (𝐹‘(𝑋 + 𝑠)). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem28.1 (𝜑𝐹:ℝ⟶ℝ)
fourierdlem28.x (𝜑𝑋 ∈ ℝ)
fourierdlem28.a (𝜑𝐴 ∈ ℝ)
fourierdlem28.3b (𝜑𝐵 ∈ ℝ)
fourierdlem28.d 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
fourierdlem28.df (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
Assertion
Ref Expression
fourierdlem28 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Distinct variable groups:   𝐴,𝑠   𝐵,𝑠   𝐷,𝑠   𝐹,𝑠   𝑋,𝑠   𝜑,𝑠

Proof of Theorem fourierdlem28
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10364 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝜑 → ℝ ∈ {ℝ, ℂ})
3 fourierdlem28.x . . . . . . 7 (𝜑𝑋 ∈ ℝ)
4 fourierdlem28.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
53, 4readdcld 10406 . . . . . 6 (𝜑 → (𝑋 + 𝐴) ∈ ℝ)
65rexrd 10426 . . . . 5 (𝜑 → (𝑋 + 𝐴) ∈ ℝ*)
76adantr 474 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) ∈ ℝ*)
8 fourierdlem28.3b . . . . . . 7 (𝜑𝐵 ∈ ℝ)
93, 8readdcld 10406 . . . . . 6 (𝜑 → (𝑋 + 𝐵) ∈ ℝ)
109rexrd 10426 . . . . 5 (𝜑 → (𝑋 + 𝐵) ∈ ℝ*)
1110adantr 474 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐵) ∈ ℝ*)
123adantr 474 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℝ)
13 elioore 12517 . . . . . 6 (𝑠 ∈ (𝐴(,)𝐵) → 𝑠 ∈ ℝ)
1413adantl 475 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℝ)
1512, 14readdcld 10406 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
164adantr 474 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ)
1716rexrd 10426 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 ∈ ℝ*)
188rexrd 10426 . . . . . . 7 (𝜑𝐵 ∈ ℝ*)
1918adantr 474 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ*)
20 simpr 479 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ (𝐴(,)𝐵))
21 ioogtlb 40622 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2217, 19, 20, 21syl3anc 1439 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐴 < 𝑠)
2316, 14, 12, 22ltadd2dd 10535 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝐴) < (𝑋 + 𝑠))
248adantr 474 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐵 ∈ ℝ)
25 iooltub 40638 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2617, 19, 20, 25syl3anc 1439 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 < 𝐵)
2714, 24, 12, 26ltadd2dd 10535 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) < (𝑋 + 𝐵))
287, 11, 15, 23, 27eliood 40625 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝑋 + 𝑠) ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))
29 1red 10377 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 1 ∈ ℝ)
30 fourierdlem28.1 . . . . . 6 (𝜑𝐹:ℝ⟶ℝ)
3130adantr 474 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝐹:ℝ⟶ℝ)
32 elioore 12517 . . . . . 6 (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) → 𝑦 ∈ ℝ)
3332adantl 475 . . . . 5 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → 𝑦 ∈ ℝ)
3431, 33ffvelrnd 6624 . . . 4 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℝ)
3534recnd 10405 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐹𝑦) ∈ ℂ)
36 fourierdlem28.df . . . 4 (𝜑𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
3736ffvelrnda 6623 . . 3 ((𝜑𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) → (𝐷𝑦) ∈ ℝ)
3812recnd 10405 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑋 ∈ ℂ)
39 0red 10380 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 0 ∈ ℝ)
40 iooretop 22977 . . . . . . . 8 (𝐴(,)𝐵) ∈ (topGen‘ran (,))
41 eqid 2777 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
4241tgioo2 23014 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
4340, 42eleqtri 2856 . . . . . . 7 (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ)
4443a1i 11 . . . . . 6 (𝜑 → (𝐴(,)𝐵) ∈ ((TopOpen‘ℂfld) ↾t ℝ))
453recnd 10405 . . . . . 6 (𝜑𝑋 ∈ ℂ)
462, 44, 45dvmptconst 41050 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑋)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 0))
4714recnd 10405 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝑠 ∈ ℂ)
482, 44dvmptidg 41052 . . . . 5 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ 𝑠)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
492, 38, 39, 46, 47, 29, 48dvmptadd 24160 . . . 4 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)))
50 0p1e1 11504 . . . . . 6 (0 + 1) = 1
5150a1i 11 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (0 + 1) = 1)
5251mpteq2dva 4979 . . . 4 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ (0 + 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5349, 52eqtrd 2813 . . 3 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝑋 + 𝑠))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ 1))
5430feqmptd 6509 . . . . . . 7 (𝜑𝐹 = (𝑦 ∈ ℝ ↦ (𝐹𝑦)))
5554reseq1d 5641 . . . . . 6 (𝜑 → (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
56 ioossre 12547 . . . . . . . 8 ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ
5756a1i 11 . . . . . . 7 (𝜑 → ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ⊆ ℝ)
5857resmptd 5702 . . . . . 6 (𝜑 → ((𝑦 ∈ ℝ ↦ (𝐹𝑦)) ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)))
5955, 58eqtr2d 2814 . . . . 5 (𝜑 → (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦)) = (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
6059oveq2d 6938 . . . 4 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))))
61 fourierdlem28.d . . . . . 6 𝐷 = (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵))))
6261eqcomi 2786 . . . . 5 (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷
6362a1i 11 . . . 4 (𝜑 → (ℝ D (𝐹 ↾ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)))) = 𝐷)
6436feqmptd 6509 . . . 4 (𝜑𝐷 = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
6560, 63, 643eqtrd 2817 . . 3 (𝜑 → (ℝ D (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐹𝑦))) = (𝑦 ∈ ((𝑋 + 𝐴)(,)(𝑋 + 𝐵)) ↦ (𝐷𝑦)))
66 fveq2 6446 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐹𝑦) = (𝐹‘(𝑋 + 𝑠)))
67 fveq2 6446 . . 3 (𝑦 = (𝑋 + 𝑠) → (𝐷𝑦) = (𝐷‘(𝑋 + 𝑠)))
682, 2, 28, 29, 35, 37, 53, 65, 66, 67dvmptco 24172 . 2 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)))
6936adantr 474 . . . . . 6 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → 𝐷:((𝑋 + 𝐴)(,)(𝑋 + 𝐵))⟶ℝ)
7069, 28ffvelrnd 6624 . . . . 5 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℝ)
7170recnd 10405 . . . 4 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → (𝐷‘(𝑋 + 𝑠)) ∈ ℂ)
7271mulid1d 10394 . . 3 ((𝜑𝑠 ∈ (𝐴(,)𝐵)) → ((𝐷‘(𝑋 + 𝑠)) · 1) = (𝐷‘(𝑋 + 𝑠)))
7372mpteq2dva 4979 . 2 (𝜑 → (𝑠 ∈ (𝐴(,)𝐵) ↦ ((𝐷‘(𝑋 + 𝑠)) · 1)) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
7468, 73eqtrd 2813 1 (𝜑 → (ℝ D (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐹‘(𝑋 + 𝑠)))) = (𝑠 ∈ (𝐴(,)𝐵) ↦ (𝐷‘(𝑋 + 𝑠))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2106  wss 3791  {cpr 4399   class class class wbr 4886  cmpt 4965  ran crn 5356  cres 5357  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  *cxr 10410   < clt 10411  (,)cioo 12487  t crest 16467  TopOpenctopn 16468  topGenctg 16484  fldccnfld 20142   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068
This theorem is referenced by:  fourierdlem57  41300  fourierdlem59  41302  fourierdlem68  41311
  Copyright terms: Public domain W3C validator