Step | Hyp | Ref
| Expression |
1 | | ovex 7048 |
. . 3
⊢ (𝐶 ↑𝑚
(𝐴 ∪ 𝐵)) ∈ V |
2 | 1 | a1i 11 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∈ V) |
3 | | ovex 7048 |
. . . 4
⊢ (𝐶 ↑𝑚
𝐴) ∈
V |
4 | | ovex 7048 |
. . . 4
⊢ (𝐶 ↑𝑚
𝐵) ∈
V |
5 | 3, 4 | xpex 7333 |
. . 3
⊢ ((𝐶 ↑𝑚
𝐴) × (𝐶 ↑𝑚
𝐵)) ∈
V |
6 | 5 | a1i 11 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) ∈ V) |
7 | | elmapi 8278 |
. . . . 5
⊢ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → 𝑥:(𝐴 ∪ 𝐵)⟶𝐶) |
8 | | ssun1 4069 |
. . . . 5
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
9 | | fssres 6412 |
. . . . 5
⊢ ((𝑥:(𝐴 ∪ 𝐵)⟶𝐶 ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐴):𝐴⟶𝐶) |
10 | 7, 8, 9 | sylancl 586 |
. . . 4
⊢ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐴):𝐴⟶𝐶) |
11 | | ssun2 4070 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
12 | | fssres 6412 |
. . . . 5
⊢ ((𝑥:(𝐴 ∪ 𝐵)⟶𝐶 ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐵):𝐵⟶𝐶) |
13 | 7, 11, 12 | sylancl 586 |
. . . 4
⊢ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐵):𝐵⟶𝐶) |
14 | 10, 13 | jca 512 |
. . 3
⊢ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶)) |
15 | | opelxp 5479 |
. . . 4
⊢
(〈(𝑥 ↾
𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) ↔ ((𝑥 ↾ 𝐴) ∈ (𝐶 ↑𝑚 𝐴) ∧ (𝑥 ↾ 𝐵) ∈ (𝐶 ↑𝑚 𝐵))) |
16 | | simpl3 1186 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐶 ∈ 𝑋) |
17 | | simpl1 1184 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ∈ 𝑉) |
18 | 16, 17 | elmapd 8270 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ↾ 𝐴) ∈ (𝐶 ↑𝑚 𝐴) ↔ (𝑥 ↾ 𝐴):𝐴⟶𝐶)) |
19 | | simpl2 1185 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ∈ 𝑊) |
20 | 16, 19 | elmapd 8270 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ↾ 𝐵) ∈ (𝐶 ↑𝑚 𝐵) ↔ (𝑥 ↾ 𝐵):𝐵⟶𝐶)) |
21 | 18, 20 | anbi12d 630 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (((𝑥 ↾ 𝐴) ∈ (𝐶 ↑𝑚 𝐴) ∧ (𝑥 ↾ 𝐵) ∈ (𝐶 ↑𝑚 𝐵)) ↔ ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶))) |
22 | 15, 21 | syl5bb 284 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) ↔ ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶))) |
23 | 14, 22 | syl5ibr 247 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) |
24 | | xp1st 7577 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) → (1st
‘𝑦) ∈ (𝐶 ↑𝑚
𝐴)) |
25 | 24 | adantl 482 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (1st
‘𝑦) ∈ (𝐶 ↑𝑚
𝐴)) |
26 | | elmapi 8278 |
. . . . . 6
⊢
((1st ‘𝑦) ∈ (𝐶 ↑𝑚 𝐴) → (1st
‘𝑦):𝐴⟶𝐶) |
27 | 25, 26 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (1st
‘𝑦):𝐴⟶𝐶) |
28 | | xp2nd 7578 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) → (2nd
‘𝑦) ∈ (𝐶 ↑𝑚
𝐵)) |
29 | 28 | adantl 482 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (2nd
‘𝑦) ∈ (𝐶 ↑𝑚
𝐵)) |
30 | | elmapi 8278 |
. . . . . 6
⊢
((2nd ‘𝑦) ∈ (𝐶 ↑𝑚 𝐵) → (2nd
‘𝑦):𝐵⟶𝐶) |
31 | 29, 30 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (2nd
‘𝑦):𝐵⟶𝐶) |
32 | | simplr 765 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (𝐴 ∩ 𝐵) = ∅) |
33 | 27, 31, 32 | fun2d 6410 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → ((1st
‘𝑦) ∪
(2nd ‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶) |
34 | 33 | ex 413 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) → ((1st
‘𝑦) ∪
(2nd ‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶)) |
35 | | unexg 7329 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
36 | 17, 19, 35 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ V) |
37 | 16, 36 | elmapd 8270 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (((1st
‘𝑦) ∪
(2nd ‘𝑦))
∈ (𝐶
↑𝑚 (𝐴 ∪ 𝐵)) ↔ ((1st ‘𝑦) ∪ (2nd
‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶)) |
38 | 34, 37 | sylibrd 260 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) → ((1st
‘𝑦) ∪
(2nd ‘𝑦))
∈ (𝐶
↑𝑚 (𝐴 ∪ 𝐵)))) |
39 | | 1st2nd2 7584 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
40 | 39 | ad2antll 725 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
41 | 27 | adantrl 712 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (1st
‘𝑦):𝐴⟶𝐶) |
42 | 31 | adantrl 712 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (2nd
‘𝑦):𝐵⟶𝐶) |
43 | | res0 5738 |
. . . . . . . . . 10
⊢
((1st ‘𝑦) ↾ ∅) = ∅ |
44 | | res0 5738 |
. . . . . . . . . 10
⊢
((2nd ‘𝑦) ↾ ∅) = ∅ |
45 | 43, 44 | eqtr4i 2822 |
. . . . . . . . 9
⊢
((1st ‘𝑦) ↾ ∅) = ((2nd
‘𝑦) ↾
∅) |
46 | | simplr 765 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (𝐴 ∩ 𝐵) = ∅) |
47 | 46 | reseq2d 5734 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → ((1st
‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((1st ‘𝑦) ↾
∅)) |
48 | 46 | reseq2d 5734 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → ((2nd
‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾
∅)) |
49 | 45, 47, 48 | 3eqtr4a 2857 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → ((1st
‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) |
50 | | fresaunres1 6419 |
. . . . . . . 8
⊢
(((1st ‘𝑦):𝐴⟶𝐶 ∧ (2nd ‘𝑦):𝐵⟶𝐶 ∧ ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴) = (1st ‘𝑦)) |
51 | 41, 42, 49, 50 | syl3anc 1364 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐴) =
(1st ‘𝑦)) |
52 | | fresaunres2 6418 |
. . . . . . . 8
⊢
(((1st ‘𝑦):𝐴⟶𝐶 ∧ (2nd ‘𝑦):𝐵⟶𝐶 ∧ ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵) = (2nd ‘𝑦)) |
53 | 41, 42, 49, 52 | syl3anc 1364 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐵) =
(2nd ‘𝑦)) |
54 | 51, 53 | opeq12d 4718 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) →
〈(((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↾ 𝐴), (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵)〉 = 〈(1st
‘𝑦), (2nd
‘𝑦)〉) |
55 | 40, 54 | eqtr4d 2834 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → 𝑦 = 〈(((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴), (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐵)〉) |
56 | | reseq1 5728 |
. . . . . . 7
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑥 ↾ 𝐴) = (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴)) |
57 | | reseq1 5728 |
. . . . . . 7
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑥 ↾ 𝐵) = (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵)) |
58 | 56, 57 | opeq12d 4718 |
. . . . . 6
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) →
〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 = 〈(((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐴),
(((1st ‘𝑦)
∪ (2nd ‘𝑦)) ↾ 𝐵)〉) |
59 | 58 | eqeq2d 2805 |
. . . . 5
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ↔ 𝑦 = 〈(((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴), (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐵)〉)) |
60 | 55, 59 | syl5ibrcom 248 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) → 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉)) |
61 | | ffn 6382 |
. . . . . . . 8
⊢ (𝑥:(𝐴 ∪ 𝐵)⟶𝐶 → 𝑥 Fn (𝐴 ∪ 𝐵)) |
62 | | fnresdm 6336 |
. . . . . . . 8
⊢ (𝑥 Fn (𝐴 ∪ 𝐵) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
63 | 7, 61, 62 | 3syl 18 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
64 | 63 | ad2antrl 724 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
65 | 64 | eqcomd 2801 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → 𝑥 = (𝑥 ↾ (𝐴 ∪ 𝐵))) |
66 | | vex 3440 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
67 | 66 | resex 5780 |
. . . . . . . . 9
⊢ (𝑥 ↾ 𝐴) ∈ V |
68 | 66 | resex 5780 |
. . . . . . . . 9
⊢ (𝑥 ↾ 𝐵) ∈ V |
69 | 67, 68 | op1std 7555 |
. . . . . . . 8
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (1st ‘𝑦) = (𝑥 ↾ 𝐴)) |
70 | 67, 68 | op2ndd 7556 |
. . . . . . . 8
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (2nd ‘𝑦) = (𝑥 ↾ 𝐵)) |
71 | 69, 70 | uneq12d 4061 |
. . . . . . 7
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → ((1st ‘𝑦) ∪ (2nd
‘𝑦)) = ((𝑥 ↾ 𝐴) ∪ (𝑥 ↾ 𝐵))) |
72 | | resundi 5748 |
. . . . . . 7
⊢ (𝑥 ↾ (𝐴 ∪ 𝐵)) = ((𝑥 ↾ 𝐴) ∪ (𝑥 ↾ 𝐵)) |
73 | 71, 72 | syl6eqr 2849 |
. . . . . 6
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → ((1st ‘𝑦) ∪ (2nd
‘𝑦)) = (𝑥 ↾ (𝐴 ∪ 𝐵))) |
74 | 73 | eqeq2d 2805 |
. . . . 5
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑥 = (𝑥 ↾ (𝐴 ∪ 𝐵)))) |
75 | 65, 74 | syl5ibrcom 248 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → 𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)))) |
76 | 60, 75 | impbid 213 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵)))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉)) |
77 | 76 | ex 413 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ∈ (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉))) |
78 | 2, 6, 23, 38, 77 | en3d 8394 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑𝑚 (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑𝑚 𝐴) × (𝐶 ↑𝑚 𝐵))) |