| Step | Hyp | Ref
| Expression |
| 1 | | ovexd 7445 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ∈ V) |
| 2 | | ovexd 7445 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m 𝐴) ∈ V) |
| 3 | | ovexd 7445 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m 𝐵) ∈ V) |
| 4 | 2, 3 | xpexd 7750 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) ∈ V) |
| 5 | | elmapi 8868 |
. . . . 5
⊢ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → 𝑥:(𝐴 ∪ 𝐵)⟶𝐶) |
| 6 | | ssun1 4158 |
. . . . 5
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) |
| 7 | | fssres 6749 |
. . . . 5
⊢ ((𝑥:(𝐴 ∪ 𝐵)⟶𝐶 ∧ 𝐴 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐴):𝐴⟶𝐶) |
| 8 | 5, 6, 7 | sylancl 586 |
. . . 4
⊢ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐴):𝐴⟶𝐶) |
| 9 | | ssun2 4159 |
. . . . 5
⊢ 𝐵 ⊆ (𝐴 ∪ 𝐵) |
| 10 | | fssres 6749 |
. . . . 5
⊢ ((𝑥:(𝐴 ∪ 𝐵)⟶𝐶 ∧ 𝐵 ⊆ (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐵):𝐵⟶𝐶) |
| 11 | 5, 9, 10 | sylancl 586 |
. . . 4
⊢ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → (𝑥 ↾ 𝐵):𝐵⟶𝐶) |
| 12 | 8, 11 | jca 511 |
. . 3
⊢ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶)) |
| 13 | | opelxp 5695 |
. . . 4
⊢
(〈(𝑥 ↾
𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) ↔ ((𝑥 ↾ 𝐴) ∈ (𝐶 ↑m 𝐴) ∧ (𝑥 ↾ 𝐵) ∈ (𝐶 ↑m 𝐵))) |
| 14 | | simpl3 1194 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐶 ∈ 𝑋) |
| 15 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐴 ∈ 𝑉) |
| 16 | 14, 15 | elmapd 8859 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ↾ 𝐴) ∈ (𝐶 ↑m 𝐴) ↔ (𝑥 ↾ 𝐴):𝐴⟶𝐶)) |
| 17 | | simpl2 1193 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐵 ∈ 𝑊) |
| 18 | 14, 17 | elmapd 8859 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ↾ 𝐵) ∈ (𝐶 ↑m 𝐵) ↔ (𝑥 ↾ 𝐵):𝐵⟶𝐶)) |
| 19 | 16, 18 | anbi12d 632 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (((𝑥 ↾ 𝐴) ∈ (𝐶 ↑m 𝐴) ∧ (𝑥 ↾ 𝐵) ∈ (𝐶 ↑m 𝐵)) ↔ ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶))) |
| 20 | 13, 19 | bitrid 283 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) ↔ ((𝑥 ↾ 𝐴):𝐴⟶𝐶 ∧ (𝑥 ↾ 𝐵):𝐵⟶𝐶))) |
| 21 | 12, 20 | imbitrrid 246 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) |
| 22 | | xp1st 8025 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) → (1st ‘𝑦) ∈ (𝐶 ↑m 𝐴)) |
| 23 | 22 | adantl 481 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (1st ‘𝑦) ∈ (𝐶 ↑m 𝐴)) |
| 24 | | elmapi 8868 |
. . . . . 6
⊢
((1st ‘𝑦) ∈ (𝐶 ↑m 𝐴) → (1st ‘𝑦):𝐴⟶𝐶) |
| 25 | 23, 24 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (1st ‘𝑦):𝐴⟶𝐶) |
| 26 | | xp2nd 8026 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) → (2nd ‘𝑦) ∈ (𝐶 ↑m 𝐵)) |
| 27 | 26 | adantl 481 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (2nd ‘𝑦) ∈ (𝐶 ↑m 𝐵)) |
| 28 | | elmapi 8868 |
. . . . . 6
⊢
((2nd ‘𝑦) ∈ (𝐶 ↑m 𝐵) → (2nd ‘𝑦):𝐵⟶𝐶) |
| 29 | 27, 28 | syl 17 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (2nd ‘𝑦):𝐵⟶𝐶) |
| 30 | | simplr 768 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (𝐴 ∩ 𝐵) = ∅) |
| 31 | 25, 29, 30 | fun2d 6747 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → ((1st ‘𝑦) ∪ (2nd
‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶) |
| 32 | 31 | ex 412 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) → ((1st ‘𝑦) ∪ (2nd
‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶)) |
| 33 | | unexg 7742 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) |
| 34 | 15, 17, 33 | syl2anc 584 |
. . . 4
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∪ 𝐵) ∈ V) |
| 35 | 14, 34 | elmapd 8859 |
. . 3
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (((1st
‘𝑦) ∪
(2nd ‘𝑦))
∈ (𝐶
↑m (𝐴 ∪
𝐵)) ↔ ((1st
‘𝑦) ∪
(2nd ‘𝑦)):(𝐴 ∪ 𝐵)⟶𝐶)) |
| 36 | 32, 35 | sylibrd 259 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) → ((1st ‘𝑦) ∪ (2nd
‘𝑦)) ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)))) |
| 37 | | 1st2nd2 8032 |
. . . . . . 7
⊢ (𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 38 | 37 | ad2antll 729 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → 𝑦 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 39 | 25 | adantrl 716 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (1st ‘𝑦):𝐴⟶𝐶) |
| 40 | 29 | adantrl 716 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (2nd ‘𝑦):𝐵⟶𝐶) |
| 41 | | res0 5975 |
. . . . . . . . . 10
⊢
((1st ‘𝑦) ↾ ∅) = ∅ |
| 42 | | res0 5975 |
. . . . . . . . . 10
⊢
((2nd ‘𝑦) ↾ ∅) = ∅ |
| 43 | 41, 42 | eqtr4i 2762 |
. . . . . . . . 9
⊢
((1st ‘𝑦) ↾ ∅) = ((2nd
‘𝑦) ↾
∅) |
| 44 | | simplr 768 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (𝐴 ∩ 𝐵) = ∅) |
| 45 | 44 | reseq2d 5971 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((1st ‘𝑦) ↾
∅)) |
| 46 | 44 | reseq2d 5971 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾
∅)) |
| 47 | 43, 45, 46 | 3eqtr4a 2797 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) |
| 48 | | fresaunres1 6756 |
. . . . . . . 8
⊢
(((1st ‘𝑦):𝐴⟶𝐶 ∧ (2nd ‘𝑦):𝐵⟶𝐶 ∧ ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴) = (1st ‘𝑦)) |
| 49 | 39, 40, 47, 48 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴) = (1st ‘𝑦)) |
| 50 | | fresaunres2 6755 |
. . . . . . . 8
⊢
(((1st ‘𝑦):𝐴⟶𝐶 ∧ (2nd ‘𝑦):𝐵⟶𝐶 ∧ ((1st ‘𝑦) ↾ (𝐴 ∩ 𝐵)) = ((2nd ‘𝑦) ↾ (𝐴 ∩ 𝐵))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵) = (2nd ‘𝑦)) |
| 51 | 39, 40, 47, 50 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵) = (2nd ‘𝑦)) |
| 52 | 49, 51 | opeq12d 4862 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → 〈(((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐴),
(((1st ‘𝑦)
∪ (2nd ‘𝑦)) ↾ 𝐵)〉 = 〈(1st ‘𝑦), (2nd ‘𝑦)〉) |
| 53 | 38, 52 | eqtr4d 2774 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → 𝑦 = 〈(((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴), (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐵)〉) |
| 54 | | reseq1 5965 |
. . . . . . 7
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑥 ↾ 𝐴) = (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴)) |
| 55 | | reseq1 5965 |
. . . . . . 7
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑥 ↾ 𝐵) = (((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐵)) |
| 56 | 54, 55 | opeq12d 4862 |
. . . . . 6
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) →
〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 = 〈(((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐴),
(((1st ‘𝑦)
∪ (2nd ‘𝑦)) ↾ 𝐵)〉) |
| 57 | 56 | eqeq2d 2747 |
. . . . 5
⊢ (𝑥 = ((1st ‘𝑦) ∪ (2nd
‘𝑦)) → (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 ↔ 𝑦 = 〈(((1st ‘𝑦) ∪ (2nd
‘𝑦)) ↾ 𝐴), (((1st
‘𝑦) ∪
(2nd ‘𝑦))
↾ 𝐵)〉)) |
| 58 | 53, 57 | syl5ibrcom 247 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) → 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉)) |
| 59 | | ffn 6711 |
. . . . . . . 8
⊢ (𝑥:(𝐴 ∪ 𝐵)⟶𝐶 → 𝑥 Fn (𝐴 ∪ 𝐵)) |
| 60 | | fnresdm 6662 |
. . . . . . . 8
⊢ (𝑥 Fn (𝐴 ∪ 𝐵) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
| 61 | 5, 59, 60 | 3syl 18 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
| 62 | 61 | ad2antrl 728 |
. . . . . 6
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (𝑥 ↾ (𝐴 ∪ 𝐵)) = 𝑥) |
| 63 | 62 | eqcomd 2742 |
. . . . 5
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → 𝑥 = (𝑥 ↾ (𝐴 ∪ 𝐵))) |
| 64 | | vex 3468 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
| 65 | 64 | resex 6021 |
. . . . . . . . 9
⊢ (𝑥 ↾ 𝐴) ∈ V |
| 66 | 64 | resex 6021 |
. . . . . . . . 9
⊢ (𝑥 ↾ 𝐵) ∈ V |
| 67 | 65, 66 | op1std 8003 |
. . . . . . . 8
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (1st ‘𝑦) = (𝑥 ↾ 𝐴)) |
| 68 | 65, 66 | op2ndd 8004 |
. . . . . . . 8
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (2nd ‘𝑦) = (𝑥 ↾ 𝐵)) |
| 69 | 67, 68 | uneq12d 4149 |
. . . . . . 7
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → ((1st ‘𝑦) ∪ (2nd
‘𝑦)) = ((𝑥 ↾ 𝐴) ∪ (𝑥 ↾ 𝐵))) |
| 70 | | resundi 5985 |
. . . . . . 7
⊢ (𝑥 ↾ (𝐴 ∪ 𝐵)) = ((𝑥 ↾ 𝐴) ∪ (𝑥 ↾ 𝐵)) |
| 71 | 69, 70 | eqtr4di 2789 |
. . . . . 6
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → ((1st ‘𝑦) ∪ (2nd
‘𝑦)) = (𝑥 ↾ (𝐴 ∪ 𝐵))) |
| 72 | 71 | eqeq2d 2747 |
. . . . 5
⊢ (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑥 = (𝑥 ↾ (𝐴 ∪ 𝐵)))) |
| 73 | 63, 72 | syl5ibrcom 247 |
. . . 4
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉 → 𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)))) |
| 74 | 58, 73 | impbid 212 |
. . 3
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) ∧ (𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵)))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉)) |
| 75 | 74 | ex 412 |
. 2
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝑥 ∈ (𝐶 ↑m (𝐴 ∪ 𝐵)) ∧ 𝑦 ∈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) → (𝑥 = ((1st ‘𝑦) ∪ (2nd ‘𝑦)) ↔ 𝑦 = 〈(𝑥 ↾ 𝐴), (𝑥 ↾ 𝐵)〉))) |
| 76 | 1, 4, 21, 36, 75 | en3d 9008 |
1
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) |