MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapunen Structured version   Visualization version   GIF version

Theorem mapunen 8882
Description: Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
mapunen (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ≈ ((𝐶m 𝐴) × (𝐶m 𝐵)))

Proof of Theorem mapunen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovexd 7290 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ∈ V)
2 ovexd 7290 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m 𝐴) ∈ V)
3 ovexd 7290 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m 𝐵) ∈ V)
42, 3xpexd 7579 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝐶m 𝐴) × (𝐶m 𝐵)) ∈ V)
5 elmapi 8595 . . . . 5 (𝑥 ∈ (𝐶m (𝐴𝐵)) → 𝑥:(𝐴𝐵)⟶𝐶)
6 ssun1 4102 . . . . 5 𝐴 ⊆ (𝐴𝐵)
7 fssres 6624 . . . . 5 ((𝑥:(𝐴𝐵)⟶𝐶𝐴 ⊆ (𝐴𝐵)) → (𝑥𝐴):𝐴𝐶)
85, 6, 7sylancl 585 . . . 4 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥𝐴):𝐴𝐶)
9 ssun2 4103 . . . . 5 𝐵 ⊆ (𝐴𝐵)
10 fssres 6624 . . . . 5 ((𝑥:(𝐴𝐵)⟶𝐶𝐵 ⊆ (𝐴𝐵)) → (𝑥𝐵):𝐵𝐶)
115, 9, 10sylancl 585 . . . 4 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥𝐵):𝐵𝐶)
128, 11jca 511 . . 3 (𝑥 ∈ (𝐶m (𝐴𝐵)) → ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶))
13 opelxp 5616 . . . 4 (⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) ↔ ((𝑥𝐴) ∈ (𝐶m 𝐴) ∧ (𝑥𝐵) ∈ (𝐶m 𝐵)))
14 simpl3 1191 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐶𝑋)
15 simpl1 1189 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐴𝑉)
1614, 15elmapd 8587 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥𝐴) ∈ (𝐶m 𝐴) ↔ (𝑥𝐴):𝐴𝐶))
17 simpl2 1190 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → 𝐵𝑊)
1814, 17elmapd 8587 . . . . 5 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥𝐵) ∈ (𝐶m 𝐵) ↔ (𝑥𝐵):𝐵𝐶))
1916, 18anbi12d 630 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (((𝑥𝐴) ∈ (𝐶m 𝐴) ∧ (𝑥𝐵) ∈ (𝐶m 𝐵)) ↔ ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶)))
2013, 19syl5bb 282 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) ↔ ((𝑥𝐴):𝐴𝐶 ∧ (𝑥𝐵):𝐵𝐶)))
2112, 20syl5ibr 245 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑥 ∈ (𝐶m (𝐴𝐵)) → ⟨(𝑥𝐴), (𝑥𝐵)⟩ ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))))
22 xp1st 7836 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → (1st𝑦) ∈ (𝐶m 𝐴))
2322adantl 481 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (1st𝑦) ∈ (𝐶m 𝐴))
24 elmapi 8595 . . . . . 6 ((1st𝑦) ∈ (𝐶m 𝐴) → (1st𝑦):𝐴𝐶)
2523, 24syl 17 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (1st𝑦):𝐴𝐶)
26 xp2nd 7837 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → (2nd𝑦) ∈ (𝐶m 𝐵))
2726adantl 481 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (2nd𝑦) ∈ (𝐶m 𝐵))
28 elmapi 8595 . . . . . 6 ((2nd𝑦) ∈ (𝐶m 𝐵) → (2nd𝑦):𝐵𝐶)
2927, 28syl 17 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (2nd𝑦):𝐵𝐶)
30 simplr 765 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (𝐴𝐵) = ∅)
3125, 29, 30fun2d 6622 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶)
3231ex 412 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶))
33 unexg 7577 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
3415, 17, 33syl2anc 583 . . . 4 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ∈ V)
3514, 34elmapd 8587 . . 3 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (((1st𝑦) ∪ (2nd𝑦)) ∈ (𝐶m (𝐴𝐵)) ↔ ((1st𝑦) ∪ (2nd𝑦)):(𝐴𝐵)⟶𝐶))
3632, 35sylibrd 258 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → ((1st𝑦) ∪ (2nd𝑦)) ∈ (𝐶m (𝐴𝐵))))
37 1st2nd2 7843 . . . . . . 7 (𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3837ad2antll 725 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
3925adantrl 712 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (1st𝑦):𝐴𝐶)
4029adantrl 712 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (2nd𝑦):𝐵𝐶)
41 res0 5884 . . . . . . . . . 10 ((1st𝑦) ↾ ∅) = ∅
42 res0 5884 . . . . . . . . . 10 ((2nd𝑦) ↾ ∅) = ∅
4341, 42eqtr4i 2769 . . . . . . . . 9 ((1st𝑦) ↾ ∅) = ((2nd𝑦) ↾ ∅)
44 simplr 765 . . . . . . . . . 10 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝐴𝐵) = ∅)
4544reseq2d 5880 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((1st𝑦) ↾ (𝐴𝐵)) = ((1st𝑦) ↾ ∅))
4644reseq2d 5880 . . . . . . . . 9 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((2nd𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ ∅))
4743, 45, 463eqtr4a 2805 . . . . . . . 8 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵)))
48 fresaunres1 6631 . . . . . . . 8 (((1st𝑦):𝐴𝐶 ∧ (2nd𝑦):𝐵𝐶 ∧ ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴) = (1st𝑦))
4939, 40, 47, 48syl3anc 1369 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴) = (1st𝑦))
50 fresaunres2 6630 . . . . . . . 8 (((1st𝑦):𝐴𝐶 ∧ (2nd𝑦):𝐵𝐶 ∧ ((1st𝑦) ↾ (𝐴𝐵)) = ((2nd𝑦) ↾ (𝐴𝐵))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵) = (2nd𝑦))
5139, 40, 47, 50syl3anc 1369 . . . . . . 7 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵) = (2nd𝑦))
5249, 51opeq12d 4809 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
5338, 52eqtr4d 2781 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑦 = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩)
54 reseq1 5874 . . . . . . 7 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑥𝐴) = (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴))
55 reseq1 5874 . . . . . . 7 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑥𝐵) = (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵))
5654, 55opeq12d 4809 . . . . . 6 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → ⟨(𝑥𝐴), (𝑥𝐵)⟩ = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩)
5756eqeq2d 2749 . . . . 5 (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ ↔ 𝑦 = ⟨(((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐴), (((1st𝑦) ∪ (2nd𝑦)) ↾ 𝐵)⟩))
5853, 57syl5ibrcom 246 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) → 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩))
59 ffn 6584 . . . . . . . 8 (𝑥:(𝐴𝐵)⟶𝐶𝑥 Fn (𝐴𝐵))
60 fnresdm 6535 . . . . . . . 8 (𝑥 Fn (𝐴𝐵) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
615, 59, 603syl 18 . . . . . . 7 (𝑥 ∈ (𝐶m (𝐴𝐵)) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
6261ad2antrl 724 . . . . . 6 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 ↾ (𝐴𝐵)) = 𝑥)
6362eqcomd 2744 . . . . 5 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → 𝑥 = (𝑥 ↾ (𝐴𝐵)))
64 vex 3426 . . . . . . . . . 10 𝑥 ∈ V
6564resex 5928 . . . . . . . . 9 (𝑥𝐴) ∈ V
6664resex 5928 . . . . . . . . 9 (𝑥𝐵) ∈ V
6765, 66op1std 7814 . . . . . . . 8 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (1st𝑦) = (𝑥𝐴))
6865, 66op2ndd 7815 . . . . . . . 8 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (2nd𝑦) = (𝑥𝐵))
6967, 68uneq12d 4094 . . . . . . 7 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → ((1st𝑦) ∪ (2nd𝑦)) = ((𝑥𝐴) ∪ (𝑥𝐵)))
70 resundi 5894 . . . . . . 7 (𝑥 ↾ (𝐴𝐵)) = ((𝑥𝐴) ∪ (𝑥𝐵))
7169, 70eqtr4di 2797 . . . . . 6 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → ((1st𝑦) ∪ (2nd𝑦)) = (𝑥 ↾ (𝐴𝐵)))
7271eqeq2d 2749 . . . . 5 (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑥 = (𝑥 ↾ (𝐴𝐵))))
7363, 72syl5ibrcom 246 . . . 4 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩ → 𝑥 = ((1st𝑦) ∪ (2nd𝑦))))
7458, 73impbid 211 . . 3 ((((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) ∧ (𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵)))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩))
7574ex 412 . 2 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → ((𝑥 ∈ (𝐶m (𝐴𝐵)) ∧ 𝑦 ∈ ((𝐶m 𝐴) × (𝐶m 𝐵))) → (𝑥 = ((1st𝑦) ∪ (2nd𝑦)) ↔ 𝑦 = ⟨(𝑥𝐴), (𝑥𝐵)⟩)))
761, 4, 21, 36, 75en3d 8732 1 (((𝐴𝑉𝐵𝑊𝐶𝑋) ∧ (𝐴𝐵) = ∅) → (𝐶m (𝐴𝐵)) ≈ ((𝐶m 𝐴) × (𝐶m 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  cun 3881  cin 3882  wss 3883  c0 4253  cop 4564   class class class wbr 5070   × cxp 5578  cres 5582   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  m cmap 8573  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-en 8692
This theorem is referenced by:  map2xp  8883  mapdom2  8884  mapdjuen  9867  ackbij1lem5  9911  hashmap  14078  mpct  42630
  Copyright terms: Public domain W3C validator