Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresfo Structured version   Visualization version   GIF version

Theorem fresfo 47018
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32576. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
fresfo ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)

Proof of Theorem fresfo
StepHypRef Expression
1 funfn 6576 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
32adantr 480 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹)
4 sseqin2 4203 . . . . 5 (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹𝐶) = 𝐶)
54biimpi 216 . . . 4 (𝐶 ⊆ ran 𝐹 → (ran 𝐹𝐶) = 𝐶)
65eqcomd 2740 . . 3 (𝐶 ⊆ ran 𝐹𝐶 = (ran 𝐹𝐶))
76adantl 481 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹𝐶))
8 eqidd 2735 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹𝐶) = (𝐹𝐶))
93, 7, 8rescnvimafod 7073 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  cin 3930  wss 3931  ccnv 5664  dom cdm 5665  ran crn 5666  cres 5667  cima 5668  Fun wfun 6535   Fn wfn 6536  ontowfo 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-fun 6543  df-fn 6544  df-fo 6547
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator