Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresfo Structured version   Visualization version   GIF version

Theorem fresfo 47039
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32561. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
fresfo ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)

Proof of Theorem fresfo
StepHypRef Expression
1 funfn 6548 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
32adantr 480 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹)
4 sseqin2 4188 . . . . 5 (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹𝐶) = 𝐶)
54biimpi 216 . . . 4 (𝐶 ⊆ ran 𝐹 → (ran 𝐹𝐶) = 𝐶)
65eqcomd 2736 . . 3 (𝐶 ⊆ ran 𝐹𝐶 = (ran 𝐹𝐶))
76adantl 481 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹𝐶))
8 eqidd 2731 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹𝐶) = (𝐹𝐶))
93, 7, 8rescnvimafod 7047 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3915  wss 3916  ccnv 5639  dom cdm 5640  ran crn 5641  cres 5642  cima 5643  Fun wfun 6507   Fn wfn 6508  ontowfo 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-fun 6515  df-fn 6516  df-fo 6519
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator