| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fresfo | Structured version Visualization version GIF version | ||
| Description: Conditions for a restriction to be an onto function. Part of fresf1o 32608. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| fresfo | ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6511 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹) |
| 4 | sseqin2 4173 | . . . . 5 ⊢ (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐶) = 𝐶) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐶) = 𝐶) |
| 6 | 5 | eqcomd 2737 | . . 3 ⊢ (𝐶 ⊆ ran 𝐹 → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 8 | eqidd 2732 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶)) | |
| 9 | 3, 7, 8 | rescnvimafod 7006 | 1 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∩ cin 3901 ⊆ wss 3902 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 “ cima 5619 Fun wfun 6475 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-fun 6483 df-fn 6484 df-fo 6487 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |