Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresfo Structured version   Visualization version   GIF version

Theorem fresfo 47049
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32555. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
fresfo ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)

Proof of Theorem fresfo
StepHypRef Expression
1 funfn 6546 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
32adantr 480 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹)
4 sseqin2 4186 . . . . 5 (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹𝐶) = 𝐶)
54biimpi 216 . . . 4 (𝐶 ⊆ ran 𝐹 → (ran 𝐹𝐶) = 𝐶)
65eqcomd 2735 . . 3 (𝐶 ⊆ ran 𝐹𝐶 = (ran 𝐹𝐶))
76adantl 481 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹𝐶))
8 eqidd 2730 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹𝐶) = (𝐹𝐶))
93, 7, 8rescnvimafod 7045 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  cin 3913  wss 3914  ccnv 5637  dom cdm 5638  ran crn 5639  cres 5640  cima 5641  Fun wfun 6505   Fn wfn 6506  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-fo 6517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator