| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fresfo | Structured version Visualization version GIF version | ||
| Description: Conditions for a restriction to be an onto function. Part of fresf1o 32561. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| fresfo | ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6548 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹) |
| 4 | sseqin2 4188 | . . . . 5 ⊢ (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐶) = 𝐶) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐶) = 𝐶) |
| 6 | 5 | eqcomd 2736 | . . 3 ⊢ (𝐶 ⊆ ran 𝐹 → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 8 | eqidd 2731 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶)) | |
| 9 | 3, 7, 8 | rescnvimafod 7047 | 1 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∩ cin 3915 ⊆ wss 3916 ◡ccnv 5639 dom cdm 5640 ran crn 5641 ↾ cres 5642 “ cima 5643 Fun wfun 6507 Fn wfn 6508 –onto→wfo 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-fun 6515 df-fn 6516 df-fo 6519 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |