![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fresfo | Structured version Visualization version GIF version |
Description: Conditions for a restriction to be an onto function. Part of fresf1o 31843. (Contributed by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
fresfo | ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6576 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
3 | 2 | adantr 482 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹) |
4 | sseqin2 4215 | . . . . 5 ⊢ (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐶) = 𝐶) | |
5 | 4 | biimpi 215 | . . . 4 ⊢ (𝐶 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐶) = 𝐶) |
6 | 5 | eqcomd 2739 | . . 3 ⊢ (𝐶 ⊆ ran 𝐹 → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
7 | 6 | adantl 483 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
8 | eqidd 2734 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶)) | |
9 | 3, 7, 8 | rescnvimafod 7073 | 1 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∩ cin 3947 ⊆ wss 3948 ◡ccnv 5675 dom cdm 5676 ran crn 5677 ↾ cres 5678 “ cima 5679 Fun wfun 6535 Fn wfn 6536 –onto→wfo 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-12 2172 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-fun 6543 df-fn 6544 df-fo 6547 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |