Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fresfo Structured version   Visualization version   GIF version

Theorem fresfo 47172
Description: Conditions for a restriction to be an onto function. Part of fresf1o 32615. (Contributed by AV, 29-Sep-2024.)
Assertion
Ref Expression
fresfo ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)

Proof of Theorem fresfo
StepHypRef Expression
1 funfn 6516 . . . 4 (Fun 𝐹𝐹 Fn dom 𝐹)
21biimpi 216 . . 3 (Fun 𝐹𝐹 Fn dom 𝐹)
32adantr 480 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹)
4 sseqin2 4172 . . . . 5 (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹𝐶) = 𝐶)
54biimpi 216 . . . 4 (𝐶 ⊆ ran 𝐹 → (ran 𝐹𝐶) = 𝐶)
65eqcomd 2739 . . 3 (𝐶 ⊆ ran 𝐹𝐶 = (ran 𝐹𝐶))
76adantl 481 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹𝐶))
8 eqidd 2734 . 2 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹𝐶) = (𝐹𝐶))
93, 7, 8rescnvimafod 7012 1 ((Fun 𝐹𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (𝐹𝐶)):(𝐹𝐶)–onto𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  cin 3897  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488  df-fn 6489  df-fo 6492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator