| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fresfo | Structured version Visualization version GIF version | ||
| Description: Conditions for a restriction to be an onto function. Part of fresf1o 32576. (Contributed by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| fresfo | ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6576 | . . . 4 ⊢ (Fun 𝐹 ↔ 𝐹 Fn dom 𝐹) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (Fun 𝐹 → 𝐹 Fn dom 𝐹) |
| 3 | 2 | adantr 480 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐹 Fn dom 𝐹) |
| 4 | sseqin2 4203 | . . . . 5 ⊢ (𝐶 ⊆ ran 𝐹 ↔ (ran 𝐹 ∩ 𝐶) = 𝐶) | |
| 5 | 4 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ ran 𝐹 → (ran 𝐹 ∩ 𝐶) = 𝐶) |
| 6 | 5 | eqcomd 2740 | . . 3 ⊢ (𝐶 ⊆ ran 𝐹 → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → 𝐶 = (ran 𝐹 ∩ 𝐶)) |
| 8 | eqidd 2735 | . 2 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (◡𝐹 “ 𝐶) = (◡𝐹 “ 𝐶)) | |
| 9 | 3, 7, 8 | rescnvimafod 7073 | 1 ⊢ ((Fun 𝐹 ∧ 𝐶 ⊆ ran 𝐹) → (𝐹 ↾ (◡𝐹 “ 𝐶)):(◡𝐹 “ 𝐶)–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∩ cin 3930 ⊆ wss 3931 ◡ccnv 5664 dom cdm 5665 ran crn 5666 ↾ cres 5667 “ cima 5668 Fun wfun 6535 Fn wfn 6536 –onto→wfo 6539 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-fun 6543 df-fn 6544 df-fo 6547 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |