MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvimafod Structured version   Visualization version   GIF version

Theorem rescnvimafod 6933
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.)
Hypotheses
Ref Expression
rescnvimafod.f (𝜑𝐹 Fn 𝐴)
rescnvimafod.e (𝜑𝐸 = (ran 𝐹𝐵))
rescnvimafod.d (𝜑𝐷 = (𝐹𝐵))
Assertion
Ref Expression
rescnvimafod (𝜑 → (𝐹𝐷):𝐷onto𝐸)

Proof of Theorem rescnvimafod
StepHypRef Expression
1 rescnvimafod.f . . 3 (𝜑𝐹 Fn 𝐴)
2 cnvimass 5978 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
32a1i 11 . . . 4 (𝜑 → (𝐹𝐵) ⊆ dom 𝐹)
4 rescnvimafod.d . . . 4 (𝜑𝐷 = (𝐹𝐵))
51fndmd 6522 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
65eqcomd 2744 . . . 4 (𝜑𝐴 = dom 𝐹)
73, 4, 63sstr4d 3964 . . 3 (𝜑𝐷𝐴)
81, 7fnssresd 6540 . 2 (𝜑 → (𝐹𝐷) Fn 𝐷)
9 df-ima 5593 . . . 4 (𝐹𝐷) = ran (𝐹𝐷)
104imaeq2d 5958 . . . . 5 (𝜑 → (𝐹𝐷) = (𝐹 “ (𝐹𝐵)))
11 fnfun 6517 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
12 funimacnv 6499 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
131, 11, 123syl 18 . . . . 5 (𝜑 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
14 incom 4131 . . . . . 6 (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵)
1514a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵))
1610, 13, 153eqtrd 2782 . . . 4 (𝜑 → (𝐹𝐷) = (ran 𝐹𝐵))
179, 16eqtr3id 2793 . . 3 (𝜑 → ran (𝐹𝐷) = (ran 𝐹𝐵))
18 rescnvimafod.e . . 3 (𝜑𝐸 = (ran 𝐹𝐵))
1917, 18eqtr4d 2781 . 2 (𝜑 → ran (𝐹𝐷) = 𝐸)
20 df-fo 6424 . 2 ((𝐹𝐷):𝐷onto𝐸 ↔ ((𝐹𝐷) Fn 𝐷 ∧ ran (𝐹𝐷) = 𝐸))
218, 19, 20sylanbrc 582 1 (𝜑 → (𝐹𝐷):𝐷onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  cin 3882  wss 3883  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412   Fn wfn 6413  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-fo 6424
This theorem is referenced by:  fresfo  44429  fcoreslem3  44446
  Copyright terms: Public domain W3C validator