Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescnvimafod | Structured version Visualization version GIF version |
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
rescnvimafod.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
rescnvimafod.e | ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) |
rescnvimafod.d | ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) |
Ref | Expression |
---|---|
rescnvimafod | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvimafod.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | cnvimass 6020 | . . . . 5 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ 𝐵) ⊆ dom 𝐹) |
4 | rescnvimafod.d | . . . 4 ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) | |
5 | 1 | fndmd 6591 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
6 | 5 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
7 | 3, 4, 6 | 3sstr4d 3979 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
8 | 1, 7 | fnssresd 6609 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷) Fn 𝐷) |
9 | df-ima 5634 | . . . 4 ⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) | |
10 | 4 | imaeq2d 6000 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐷) = (𝐹 “ (◡𝐹 “ 𝐵))) |
11 | fnfun 6586 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
12 | funimacnv 6566 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
13 | 1, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) |
14 | incom 4149 | . . . . . 6 ⊢ (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵)) |
16 | 10, 13, 15 | 3eqtrd 2780 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
17 | 9, 16 | eqtr3id 2790 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
18 | rescnvimafod.e | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) | |
19 | 17, 18 | eqtr4d 2779 | . 2 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = 𝐸) |
20 | df-fo 6486 | . 2 ⊢ ((𝐹 ↾ 𝐷):𝐷–onto→𝐸 ↔ ((𝐹 ↾ 𝐷) Fn 𝐷 ∧ ran (𝐹 ↾ 𝐷) = 𝐸)) | |
21 | 8, 19, 20 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∩ cin 3897 ⊆ wss 3898 ◡ccnv 5620 dom cdm 5621 ran crn 5622 ↾ cres 5623 “ cima 5624 Fun wfun 6474 Fn wfn 6475 –onto→wfo 6478 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-12 2170 ax-ext 2707 ax-sep 5244 ax-nul 5251 ax-pr 5373 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4271 df-if 4475 df-sn 4575 df-pr 4577 df-op 4581 df-br 5094 df-opab 5156 df-id 5519 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6482 df-fn 6483 df-fo 6486 |
This theorem is referenced by: fresfo 44960 fcoreslem3 44977 |
Copyright terms: Public domain | W3C validator |