| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescnvimafod | Structured version Visualization version GIF version | ||
| Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
| Ref | Expression |
|---|---|
| rescnvimafod.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| rescnvimafod.e | ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) |
| rescnvimafod.d | ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) |
| Ref | Expression |
|---|---|
| rescnvimafod | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescnvimafod.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | cnvimass 6035 | . . . . 5 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ 𝐵) ⊆ dom 𝐹) |
| 4 | rescnvimafod.d | . . . 4 ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) | |
| 5 | 1 | fndmd 6591 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 6 | 5 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
| 7 | 3, 4, 6 | 3sstr4d 3986 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
| 8 | 1, 7 | fnssresd 6610 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷) Fn 𝐷) |
| 9 | df-ima 5632 | . . . 4 ⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) | |
| 10 | 4 | imaeq2d 6013 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐷) = (𝐹 “ (◡𝐹 “ 𝐵))) |
| 11 | fnfun 6586 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
| 12 | funimacnv 6567 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
| 13 | 1, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) |
| 14 | incom 4158 | . . . . . 6 ⊢ (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵) | |
| 15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵)) |
| 16 | 10, 13, 15 | 3eqtrd 2772 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
| 17 | 9, 16 | eqtr3id 2782 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
| 18 | rescnvimafod.e | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) | |
| 19 | 17, 18 | eqtr4d 2771 | . 2 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = 𝐸) |
| 20 | df-fo 6492 | . 2 ⊢ ((𝐹 ↾ 𝐷):𝐷–onto→𝐸 ↔ ((𝐹 ↾ 𝐷) Fn 𝐷 ∧ ran (𝐹 ↾ 𝐷) = 𝐸)) | |
| 21 | 8, 19, 20 | sylanbrc 583 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 “ cima 5622 Fun wfun 6480 Fn wfn 6481 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-fo 6492 |
| This theorem is referenced by: fresfo 47172 fcoreslem3 47189 3f1oss1 47199 |
| Copyright terms: Public domain | W3C validator |