MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvimafod Structured version   Visualization version   GIF version

Theorem rescnvimafod 6872
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.)
Hypotheses
Ref Expression
rescnvimafod.f (𝜑𝐹 Fn 𝐴)
rescnvimafod.e (𝜑𝐸 = (ran 𝐹𝐵))
rescnvimafod.d (𝜑𝐷 = (𝐹𝐵))
Assertion
Ref Expression
rescnvimafod (𝜑 → (𝐹𝐷):𝐷onto𝐸)

Proof of Theorem rescnvimafod
StepHypRef Expression
1 rescnvimafod.f . . 3 (𝜑𝐹 Fn 𝐴)
2 cnvimass 5934 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
32a1i 11 . . . 4 (𝜑 → (𝐹𝐵) ⊆ dom 𝐹)
4 rescnvimafod.d . . . 4 (𝜑𝐷 = (𝐹𝐵))
51fndmd 6461 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
65eqcomd 2742 . . . 4 (𝜑𝐴 = dom 𝐹)
73, 4, 63sstr4d 3934 . . 3 (𝜑𝐷𝐴)
81, 7fnssresd 6479 . 2 (𝜑 → (𝐹𝐷) Fn 𝐷)
9 df-ima 5549 . . . 4 (𝐹𝐷) = ran (𝐹𝐷)
104imaeq2d 5914 . . . . 5 (𝜑 → (𝐹𝐷) = (𝐹 “ (𝐹𝐵)))
11 fnfun 6457 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
12 funimacnv 6439 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
131, 11, 123syl 18 . . . . 5 (𝜑 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
14 incom 4101 . . . . . 6 (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵)
1514a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵))
1610, 13, 153eqtrd 2775 . . . 4 (𝜑 → (𝐹𝐷) = (ran 𝐹𝐵))
179, 16eqtr3id 2785 . . 3 (𝜑 → ran (𝐹𝐷) = (ran 𝐹𝐵))
18 rescnvimafod.e . . 3 (𝜑𝐸 = (ran 𝐹𝐵))
1917, 18eqtr4d 2774 . 2 (𝜑 → ran (𝐹𝐷) = 𝐸)
20 df-fo 6364 . 2 ((𝐹𝐷):𝐷onto𝐸 ↔ ((𝐹𝐷) Fn 𝐷 ∧ ran (𝐹𝐷) = 𝐸))
218, 19, 20sylanbrc 586 1 (𝜑 → (𝐹𝐷):𝐷onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  cin 3852  wss 3853  ccnv 5535  dom cdm 5536  ran crn 5537  cres 5538  cima 5539  Fun wfun 6352   Fn wfn 6353  ontowfo 6356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-br 5040  df-opab 5102  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-fun 6360  df-fn 6361  df-fo 6364
This theorem is referenced by:  fresfo  44157  fcoreslem3  44174
  Copyright terms: Public domain W3C validator