![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescnvimafod | Structured version Visualization version GIF version |
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.) |
Ref | Expression |
---|---|
rescnvimafod.f | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
rescnvimafod.e | ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) |
rescnvimafod.d | ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) |
Ref | Expression |
---|---|
rescnvimafod | ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescnvimafod.f | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
2 | cnvimass 6079 | . . . . 5 ⊢ (◡𝐹 “ 𝐵) ⊆ dom 𝐹 | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ 𝐵) ⊆ dom 𝐹) |
4 | rescnvimafod.d | . . . 4 ⊢ (𝜑 → 𝐷 = (◡𝐹 “ 𝐵)) | |
5 | 1 | fndmd 6653 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
6 | 5 | eqcomd 2733 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
7 | 3, 4, 6 | 3sstr4d 4025 | . . 3 ⊢ (𝜑 → 𝐷 ⊆ 𝐴) |
8 | 1, 7 | fnssresd 6673 | . 2 ⊢ (𝜑 → (𝐹 ↾ 𝐷) Fn 𝐷) |
9 | df-ima 5685 | . . . 4 ⊢ (𝐹 “ 𝐷) = ran (𝐹 ↾ 𝐷) | |
10 | 4 | imaeq2d 6057 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐷) = (𝐹 “ (◡𝐹 “ 𝐵))) |
11 | fnfun 6648 | . . . . . 6 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) | |
12 | funimacnv 6628 | . . . . . 6 ⊢ (Fun 𝐹 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) | |
13 | 1, 11, 12 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ (◡𝐹 “ 𝐵)) = (𝐵 ∩ ran 𝐹)) |
14 | incom 4197 | . . . . . 6 ⊢ (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵) | |
15 | 14 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹 ∩ 𝐵)) |
16 | 10, 13, 15 | 3eqtrd 2771 | . . . 4 ⊢ (𝜑 → (𝐹 “ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
17 | 9, 16 | eqtr3id 2781 | . . 3 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = (ran 𝐹 ∩ 𝐵)) |
18 | rescnvimafod.e | . . 3 ⊢ (𝜑 → 𝐸 = (ran 𝐹 ∩ 𝐵)) | |
19 | 17, 18 | eqtr4d 2770 | . 2 ⊢ (𝜑 → ran (𝐹 ↾ 𝐷) = 𝐸) |
20 | df-fo 6548 | . 2 ⊢ ((𝐹 ↾ 𝐷):𝐷–onto→𝐸 ↔ ((𝐹 ↾ 𝐷) Fn 𝐷 ∧ ran (𝐹 ↾ 𝐷) = 𝐸)) | |
21 | 8, 19, 20 | sylanbrc 582 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐷):𝐷–onto→𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∩ cin 3943 ⊆ wss 3944 ◡ccnv 5671 dom cdm 5672 ran crn 5673 ↾ cres 5674 “ cima 5675 Fun wfun 6536 Fn wfn 6537 –onto→wfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-fun 6544 df-fn 6545 df-fo 6548 |
This theorem is referenced by: fresfo 46343 fcoreslem3 46360 |
Copyright terms: Public domain | W3C validator |