MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvimafod Structured version   Visualization version   GIF version

Theorem rescnvimafod 7008
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.)
Hypotheses
Ref Expression
rescnvimafod.f (𝜑𝐹 Fn 𝐴)
rescnvimafod.e (𝜑𝐸 = (ran 𝐹𝐵))
rescnvimafod.d (𝜑𝐷 = (𝐹𝐵))
Assertion
Ref Expression
rescnvimafod (𝜑 → (𝐹𝐷):𝐷onto𝐸)

Proof of Theorem rescnvimafod
StepHypRef Expression
1 rescnvimafod.f . . 3 (𝜑𝐹 Fn 𝐴)
2 cnvimass 6020 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
32a1i 11 . . . 4 (𝜑 → (𝐹𝐵) ⊆ dom 𝐹)
4 rescnvimafod.d . . . 4 (𝜑𝐷 = (𝐹𝐵))
51fndmd 6591 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
65eqcomd 2742 . . . 4 (𝜑𝐴 = dom 𝐹)
73, 4, 63sstr4d 3979 . . 3 (𝜑𝐷𝐴)
81, 7fnssresd 6609 . 2 (𝜑 → (𝐹𝐷) Fn 𝐷)
9 df-ima 5634 . . . 4 (𝐹𝐷) = ran (𝐹𝐷)
104imaeq2d 6000 . . . . 5 (𝜑 → (𝐹𝐷) = (𝐹 “ (𝐹𝐵)))
11 fnfun 6586 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
12 funimacnv 6566 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
131, 11, 123syl 18 . . . . 5 (𝜑 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
14 incom 4149 . . . . . 6 (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵)
1514a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵))
1610, 13, 153eqtrd 2780 . . . 4 (𝜑 → (𝐹𝐷) = (ran 𝐹𝐵))
179, 16eqtr3id 2790 . . 3 (𝜑 → ran (𝐹𝐷) = (ran 𝐹𝐵))
18 rescnvimafod.e . . 3 (𝜑𝐸 = (ran 𝐹𝐵))
1917, 18eqtr4d 2779 . 2 (𝜑 → ran (𝐹𝐷) = 𝐸)
20 df-fo 6486 . 2 ((𝐹𝐷):𝐷onto𝐸 ↔ ((𝐹𝐷) Fn 𝐷 ∧ ran (𝐹𝐷) = 𝐸))
218, 19, 20sylanbrc 583 1 (𝜑 → (𝐹𝐷):𝐷onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3897  wss 3898  ccnv 5620  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Fun wfun 6474   Fn wfn 6475  ontowfo 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pr 5373
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-sn 4575  df-pr 4577  df-op 4581  df-br 5094  df-opab 5156  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6482  df-fn 6483  df-fo 6486
This theorem is referenced by:  fresfo  44960  fcoreslem3  44977
  Copyright terms: Public domain W3C validator