MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescnvimafod Structured version   Visualization version   GIF version

Theorem rescnvimafod 7012
Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024.) (Revised by AV, 29-Sep-2024.)
Hypotheses
Ref Expression
rescnvimafod.f (𝜑𝐹 Fn 𝐴)
rescnvimafod.e (𝜑𝐸 = (ran 𝐹𝐵))
rescnvimafod.d (𝜑𝐷 = (𝐹𝐵))
Assertion
Ref Expression
rescnvimafod (𝜑 → (𝐹𝐷):𝐷onto𝐸)

Proof of Theorem rescnvimafod
StepHypRef Expression
1 rescnvimafod.f . . 3 (𝜑𝐹 Fn 𝐴)
2 cnvimass 6035 . . . . 5 (𝐹𝐵) ⊆ dom 𝐹
32a1i 11 . . . 4 (𝜑 → (𝐹𝐵) ⊆ dom 𝐹)
4 rescnvimafod.d . . . 4 (𝜑𝐷 = (𝐹𝐵))
51fndmd 6591 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
65eqcomd 2739 . . . 4 (𝜑𝐴 = dom 𝐹)
73, 4, 63sstr4d 3986 . . 3 (𝜑𝐷𝐴)
81, 7fnssresd 6610 . 2 (𝜑 → (𝐹𝐷) Fn 𝐷)
9 df-ima 5632 . . . 4 (𝐹𝐷) = ran (𝐹𝐷)
104imaeq2d 6013 . . . . 5 (𝜑 → (𝐹𝐷) = (𝐹 “ (𝐹𝐵)))
11 fnfun 6586 . . . . . 6 (𝐹 Fn 𝐴 → Fun 𝐹)
12 funimacnv 6567 . . . . . 6 (Fun 𝐹 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
131, 11, 123syl 18 . . . . 5 (𝜑 → (𝐹 “ (𝐹𝐵)) = (𝐵 ∩ ran 𝐹))
14 incom 4158 . . . . . 6 (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵)
1514a1i 11 . . . . 5 (𝜑 → (𝐵 ∩ ran 𝐹) = (ran 𝐹𝐵))
1610, 13, 153eqtrd 2772 . . . 4 (𝜑 → (𝐹𝐷) = (ran 𝐹𝐵))
179, 16eqtr3id 2782 . . 3 (𝜑 → ran (𝐹𝐷) = (ran 𝐹𝐵))
18 rescnvimafod.e . . 3 (𝜑𝐸 = (ran 𝐹𝐵))
1917, 18eqtr4d 2771 . 2 (𝜑 → ran (𝐹𝐷) = 𝐸)
20 df-fo 6492 . 2 ((𝐹𝐷):𝐷onto𝐸 ↔ ((𝐹𝐷) Fn 𝐷 ∧ ran (𝐹𝐷) = 𝐸))
218, 19, 20sylanbrc 583 1 (𝜑 → (𝐹𝐷):𝐷onto𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cin 3897  wss 3898  ccnv 5618  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Fun wfun 6480   Fn wfn 6481  ontowfo 6484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6488  df-fn 6489  df-fo 6492
This theorem is referenced by:  fresfo  47172  fcoreslem3  47189  3f1oss1  47199
  Copyright terms: Public domain W3C validator